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ABSTRACT

Structural Characterisation of Proteins from the Peroxiredoxin Family

Report Title

The oligomerisation of protein subunits is an area of much research interest, in particular the relationship to protein 
function. In the last decade, the potential to control the interactions involved in order to design constructs with 
tuneable oligomeric properties in vitro has been pursued. The subject of this thesis is the quaternary structure of 
members of the peroxiredoxin family, which have been seen to assume an intriguing array of organisations. Human 
Peroxiredoxin 3 (HsPrx3) and Mycobacterium tuberculosis alkyl hydroperoxide reductase (MtAhpE) catalyse the 
detoxification of reactive species, preferentially hydrogen peroxide and peroxynitrite respectively, and form an 
essential part of the antioxidant defence system. As well as their biomedical interest, the ability of these proteins to 
form organised supramolecular assemblies makes them of interest in protein nanotechnology.

The work described focusses on the elucidation of the quaternary structure of both proteins, resolving previous 
debates about their oligomeric state. The factors influencing oligomerisation were examined through biophysical 
characterisation in different conditions, using solution techniques including chromatography, light and X-ray 
scattering, and electron microscopy. The insight gained, along with analysis of the protein-protein interfaces, was 
used to alter the quaternary structure through site-directed mutagenesis. This resulted in a level of control over the 
protein’s oligomeric state to be achieved, and novel structures with potential applications in nanotechnology to be 
generated. The activity of the non-native structures was also assessed, to begin to unravel the relationship between 
peroxiredoxin quaternary structure to enzyme activity.

The formation and structure of very high molecular weight complexes of HsPrx3 were explored using electron 
microscopy. The first high resolution structural data for such a complex is presented, analysis of which allowed the 
theory of an assembly mechanism to be proposed.
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ABSTRACT 
 

The oligomerisation of protein subunits is an area of much research interest, in 

particular the relationship to protein function. In the last decade, the potential to control 

the interactions involved in order to design constructs with tuneable oligomeric 

properties in vitro has been pursued. The subject of this thesis is the quaternary structure 

of members of the peroxiredoxin family, which have been seen to assume an intriguing 

array of organisations. Human Peroxiredoxin 3 (HsPrx3) and Mycobacterium 

tuberculosis alkyl hydroperoxide reductase (MtAhpE) catalyse the detoxification of 

reactive species, preferentially hydrogen peroxide and peroxynitrite respectively, and 

form an essential part of the antioxidant defence system. As well as their biomedical 

interest, the ability of these proteins to form organised supramolecular assemblies 

makes them of interest in protein nanotechnology. 

 

The work described focusses on the elucidation of the quaternary structure of both 

proteins, resolving previous debates about their oligomeric state. The factors influencing 

oligomerisation were examined through biophysical characterisation in different 

conditions, using solution techniques including chromatography, light and X-ray 

scattering, and electron microscopy. The insight gained, along with analysis of the 

protein-protein interfaces, was used to alter the quaternary structure through site-

directed mutagenesis. This resulted in a level of control over the protein’s oligomeric 

state to be achieved, and novel structures with potential applications in nanotechnology 

to be generated. The activity of the non-native structures was also assessed, to begin to 

unravel the relationship between peroxiredoxin quaternary structure to enzyme activity. 

 

The formation and structure of very high molecular weight complexes of HsPrx3 were 

explored using electron microscopy. The first high resolution structural data for such a 

complex is presented, analysis of which allowed the theory of an assembly mechanism 

to be proposed. 
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Chapter 1 Introduction 

 

1.1 Oxidative stress 

 

1.1.1 Reactive oxygen species are inevitable in aerobic life 

 

Living in an aerobic environment enables higher amounts of adenosine triphosphate 

(ATP) to be generated than is possible in anaerobic conditions, but with this increase in 

efficiency comes a potentially damaging by-product – reactive oxygen species (ROS). 

Molecular oxygen can be completely reduced to water, but electron leakage from 

protein complexes within the respiratory chain can incompletely reduce oxygen, leading 

to the production of superoxide radical anions, hydrogen peroxide and other ROS 

(reviewed in Sies, 1993). These molecules are short-lived as they are rapidly converted 

to hydrogen peroxide (H2O2) by further spontaneous reduction or by enzymes such as 

superoxide dismutases (SOD). Under normal physiological conditions H2O2 production 

accounts for ~ 2% of oxygen uptake (reviewed in Inoue et al., 2003). When this 

molecule comes into contact with transition metals such as Fe
2+ 

or Cu
2+

, hydroxyl 

radicals are generated through the Fenton reaction (Fenton 1894; reviewed in Halliwell 

and Gutteridge, 1984; equation 1.1). These are highly reactive species and react quickly 

with all biological molecules including proteins, lipids and nucleic acids (Stadtman, 

1992; Ames, 1989). 

 Fe
2+ 

 +  H2O2   Fe
3+ 

 +  OH
-
  +  OH

.
  
    Equation 1.1 

ROS can also arise from exogenous sources, such as ionising radiation, redox-cycling 

drugs, or other intracellular reactions such as the respiratory burst exerted by 

phagocytes during an immune response (reviewed in Forman and Torres, 2001). 

Efficient mechanisms to minimise the production and deleterious effects of ROS are 
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therefore essential. The inhibition of normal cellular functions resulting from ROS 

damage has been linked to pathologies including cancer, Alzheimer’s disease and 

aspects of aging (Harman, 1956; Wallace 2005; Rego and Oliveira 2003), making this 

process a focus of therapeutic development. 

 

1.1.2 Numerous systems exist to counteract ROS damage 

 

The first line of defence to counteract the effects of ROS and repair oxidised 

biomolecules is the removal of the reactive molecules through reduction. This is 

achieved either using nonenzymatic ROS scavengers, such as vitamins C and E as sinks, 

or by using catalysts such as catalase and SOD (Gaté et al., 1999).  

 

1.1.2.1 Superoxide dismutases  

 

Present in virtually all aerobic and aerotolerant anaerobic organisms (and in some very 

rare aerobes), SODs (EC 1.15.1.1) are metalloproteins that fall into three classes 

(reviewed in Bannister et al., 1987) – those containing copper and zinc at the active site 

(CuZn-SODs, found mostly in eukaryotic cytosols); those containing manganese (Mn-

SODs which make up most mitochondrial and many bacterial SODs); and finally iron 

containing (Fe-SODs, of prokaryotes). SODs catalyse the dismutation of free radicals 

(equation 1.2) through a reaction involving the reduction and subsequent oxidation of 

the metal at the catalytic centre (Fridovic, 1995; McCord and Fridovich, 1969).  

  SOD  +  O2
·-
  +  2 H

+
    SOD  +  H2O2 Equation 1.2 

The H2O2 produced is able to diffuse through membranes to remote locations before 

reacting further. Its low reactivity allows it to function as a signalling molecule, 

specifically oxidising cysteine residues to influence enzyme function (Gough and 

Cotter, 2011). However, high cellular levels can be toxic, through the oxidation of non-
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target proteins and biological molecules including nucleic acids and lipids (Imlay, 

2003).  

 

1.1.2.2 Catalases 

 

More accurately known as hydroperoxidases, catalases (EC 1.11.1.6) are peroxisomal, 

haem-containing enzymes that catalyse the reduction of H2O2 to oxygen and water 

(Wiesner, 1962; equation 1.3).  

  2 H2O2   2 H2O  +  O2    Equation 1.3 

Theoretical Km values calculated from studies of catalases show the reaction rates are 

maintained at ~10
6
 M

-1
 s

-1
, even at high concentrations of H2O2. This, along with their 

resistance to saturation, has led to catalases often being referred to as catalytically 

perfect (Switala and Loewen, 2002; Alfonso-Prieto et al., 2009).  

 

1.1.2.3 Glutathione peroxidases 

 

The glutathione peroxidase (GPx) family comprises a group of selenoproteins, which 

are well characterised in antioxidant defence (EC 1.11.1.9). Eight isoforms have been 

identified in humans (Placzek, 2013), all of which show a thioredoxin-fold structure and 

contain a catalytically active selenocysteine, except GPx7 and GPx8 which contain 

cysteine and have a much lower reactivity (reviewed in Flohé and Maiorino, 2013). 

GPxs catalyse the reduction of H2O2, organic peroxides and lipid peroxides through 

electron transfer from glutathione (GSH) to the peroxide substrate (equation 1.4) via the 

catalytic selenocysteine and play an important role in H2O2 homeostasis (Prabhakar et 

al., 2005). 

  2 GSH  +  ROOH       2 GS + ROH + H2O Equation 1.4 
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The selenocysteine is oxidised to a transient selenenic acid form, which is rapidly 

reduced by GSH to glutathione disulfide (Epp et al., 1983). Glutathione reductase (GR) 

recycles the enzyme back to its reduced form to continue the catalytic cycle (reviewed 

in Lu and Holmgren 2008).  

 

1.1.2.4 Peroxiredoxins  

 

The first characterisation of a peroxiredoxin (Prx) began with the isolation of a small 

(25 kDa) protein which prevented degradation of other enzymes through oxidative 

damage (Kim et al., 1985). This protein required a thiol-containing reductant and was 

therefore named thiol-specific antioxidant (TSA) (Kim et al., 1988).  

 

TSA-related proteins have since been found in all kingdoms and named the Prx family 

(Chae et al., 1994a). Comprising up to 1% of the soluble protein content of cells (Kim 

et al., 1989), Prxs are identified through their peroxidase activity via the oxidation of a 

thiol group on a conserved cysteine residue (Chae et al., 1994b). Their abundance and 

the severity of knockout phenotype compared to that of catalase or GPx knockout 

phenotypes suggest that the Prxs are critical in antioxidant defence (Muller et al., 2007). 

The Prx family of enzymes (EC 1.11.1.15) catalyse the reduction of H2O2, peroxynitrite 

and other organic hydroperoxides in the following reaction: 

 ROOH + 2 e
-
 + 2 H

+
                       ROH + H2O  Equation 1.5 

 

The net reaction with H2O2 therefore being: 

 2 e
-
 + 2 H

+ 
+ H2O2            2 H2O   Equation 1.6 
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1.2 The ubiquitous Prx family 

 

1.2.1 Prxs are classified on cysteine content 

 

Prxs do not use redox active metal centres such as metal ions or haem, but instead 

contain a cysteine residue in the N-terminal domain which is essential for activity, and 

conserved in all species, except for the Prx of Eubacterium acidamidophilum which 

uses selenocysteine (Schröder, 2001). This residue – denoted the peroxidatic cysteine, 

CP – is equivalent to an active metal centre and allows catalytic rates of ~10
7
 M

-1 
s

-1
 to 

be reached (Poole, in Flohé and Harris, 2007). Their high cellular concentration and 

upregulation in response to oxidative stress suggests that they play a key role in 

peroxide detoxification, and the discovery of functions beyond peroxidase activity has 

begun to uncover a complex range of activities related to cellular conditions (Rhee et 

al., 2005). 

 

Originally grouped according to the number of cysteine residues directly involved in 

catalysis, Prxs are generally classified as 2-Cys (found in animals, some plants and 

bacteria) or 1-Cys (present in archaebacteria, animals and most plants; Chae et al, 

1994b). 2-Cys Prxs contain a resolving cysteine (CR) in the C-terminal domain, 

additional to the conserved CP, and are subdivided into typical or atypical, based on the 

catalytic mechanism. Typical 2-Cys Prxs represent the largest group of the Prx family; 

therefore, the mechanism described here considers the 2-Cys Prxs.  
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1.2.2 Prxs follow a common, three step catalytic cycle 

 

1.2.2.1 Peroxidation 

 

The thiol group of CP (denoted SP) is virtually unreactive with peroxides (Poole, in 

Flohé and Harris, 2007). The active site is organised so that > 90% of CP thiol groups 

are deprotonated to thiolate at physiological pH (section 1.2.3.2; Wood et al., 2003; 

Nelson et al., 2008). The thiolate form (SP
-
) is a stronger nucleophile, and can attack 

and reduce the peroxide substrate in a nucleophilic substitution reaction, releasing 

alcohol and water and becoming oxidised to the sulfenic acid form (SPOH; equation 1.7; 

Poole, in Flohé and Harris, 2007; figure 1.1A). It is not clear what deprotonates CP or 

protonates the RO
-
 leaving group of the substrate, but recent structural data suggest the 

substrate is well positioned for a water molecule to fulfil at least the latter role (Hall et 

al., 2010).  

 H2O2  +  RSPH RSPOH  +  H2O  Equation 1.7 

A: Substrate reduction 

 
B: Prx recycling 

 
Figure 1.1: Peroxiredoxin mechanism relies on redox cycling   

A: CP is deprotonated by a base, after which it can attack the substrate, releasing water and the 
reduced substrate and becoming oxidised itself. The bases that deprotonate CP and protonate the 
reduced substrate are denoted B but may not be the same. B: CP from one subunit and CR from 
the other condense to form an intersubunit disulfide bond. This is reduced by a thiol containing 
reductant (Wood et al., 2003). Reaction shown represents a typical 2-Cys Prx. 
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1.2.2.2 Resolution 

 

During this step, the sulfenic acid derivative SPOH is attacked by a free thiol group, 

releasing water and forming a disulfide bond between SP and the attacking group. Prior 

to peroxidation, 2-Cys Prxs exist as non-covalent homodimers, stabilised mostly 

through hydrophobic interactions. CP of one monomer is near to CR of the other (see 

section 1.2.5.1 for further structural details), and so CR of the apposing monomer can act 

as the attacking thiol group, forming an intermolecular disulfide bond (equation 1.8; 

Schröder, 2000; Ellis and Poole, 2007; figure 1.1B). It has been suggested that disulfide 

linkages can occur between corresponding cysteine residues (i.e., CP-CP, or CR-CR). 

Although only CP is absolutely necessary for peroxidase activity, both are essential for 

proper maintenance of the 2-Cys Prx dimer structure after oxidation (Chae et al., 1994c; 

Ellis and Poole, 2007).   

 RSPOH  +  R’SH      RSPSR’  +  H2O  Equation 1.8 

 

1.2.2.3 Recycling 

 

For catalysis to continue, the disulfide bond must be reduced to convert CP back to the 

thiol form (SPH; equation 1.9), which requires a thiolate-bearing reductant. Although 

the identity of the reductant varies between Prxs, most appear to be redox proteins 

containing the motif CxxC, where x represents unconserved residues. Thioredoxin (Trx) 

or glutaredoxin (Grx) are effective with most 2-Cys Prxs (Verdoucq et al., 1999). The 

more N-terminal cysteine of the reductant attacks and reduces CR, forming a mixed 

disulfide-bridged intermediate. The vicinal cysteine of the reductant then attacks the 

resulting half-cystine of CP (Chae et al., 1994a; figure 1.1B). CR is essential for correct 

recycling of Prxs, with mutation allowing one round of catalysis but preventing 

recycling (Montemartini et al., 1999). Recent research suggests that this is due to the 

steric inaccessibility of CP after peroxidation, CR thus providing an accessible residue 

for the reductant to attack (Cao et al., 2011). Small reductants such as dithiothreitol 
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(DTT) are able to reduce Prxs with mutated CR residues through direct attack of CP, 

leading to the theory that the main role of CR is in fact to protect Prxs from 

hyperoxidation (see section 1.2.4; Trujillo et al., 2006). This is supported by studies 

which indicated that mutation of CR increased the propensity of hyperoxidation (Jang et 

al., 2004). 

 2 e
-
 + 2 H

+
 + RSPSR’                   RSPH + R’SH  Equation 1.9 

 

1.2.3 The Prx tertiary structure is highly conserved 

 

1.2.3.1 Prx structure is centred around a Trx fold 

 

The Trx fold consists of four β-sheets arranged as one parallel and one antiparallel pair, 

and sandwiched between two α-helices (Martin 1995; figure 1.2A). The Prxs contain C- 

and N-terminal extensions, along with some elements additional to the thioredoxin fold 

(figure 1.2B). In typical Prxs these form a 5-stranded β-sheet (β5-β4-β3-β6-β7), on one 

side of which lie a β1-β2 hairpin, α5 and α1 helices, and on the other side α2/3 and α6 

helices. CP is located in the first turn of the kinked helix α2/3 (figure 1.2B), which is 

composed of two adjoining helices and sometimes seen as two distinct helices (hence 

often referred to as helix 2/3). This basic structure is highly conserved, with differences 

between the Prx families seen mostly in the loop regions between these conserved 

secondary structure elements (reviewed in Hofmann, 2002). 
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A: The Trx fold                                     B: Typical 2-Cys Prx monomer 

              
Figure 1.2: The Prx tertiary structure is based around a Trx fold 

A: The Trx fold comprises one pair of parallel and one pair of antiparallel β-sheets, sandwiched 

between two α-helices (as demonstrated by human thioredoxin, protein data bank (PDB) ID: 

1ERT; Weichsel et al., 1996). B: The tertiary structure of a typical 2-Cys Prx is an example of 

the well conserved monomer structure (bovine Prx3 [BtPrx3], PDB ID: 1ZYE; Cao et al., 

2005). The additional two helices and two β-sheets are highlighted in pink; CP is shown as 

yellow spheres. Structural elements are labelled as suggested by Wood et al., 2002. Arrows 

indicate helices behind the 5 β-sheets. Unless otherwise stated, all structural representations in 

this thesis were created using PyMol (DeLano, 2002). 

 

1.2.3.2 The Prx active site shows a universal structure 

 

Despite the high structural conservation, the Prx family shows low sequence 

conservation (typically 20 – 30% sequence identity). Some key residues are conserved, 

and the active site structure is universal across the subgroups of the Prx family. (Karplus 

and Hall, in Flohé and Harris, 2007). CP is located in the first turn of helix α2 in a nearly 

universal PxxxTxxCP sequence. The proline, threonine and a sequentially distal 

arginine are all positioned in a conserved spatial arrangement within van der Waals 

contact with CP (figure 1.3).  
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Figure 1.3: The active site structure stabilises and activates CP
-
 

The spatially conserved arrangement of the catalytic triad (shown in red) Arg (R123), Thr (T44) 

and Pro (P40; numbering as for BtPrx3 shown here; PDB ID: 1ZYE; Cao et al., 2005) in the 

active site work to activate CP in the reduced form of the enzyme. The primary role of P40 is 

thought to be shielding the active site from solvent molecules. The bonding network also 

includes the neighbouring residue to proline (CP – 6). Pink regions are as in figure 1.2 for 

orientation. 

 

The catalytic triad is made up of CP, T44 and R123 (numbering for BtPrx3 will be used; 

Cao et al., 2005), which form a hydrogen bonding (H-bonding) network to activate and 

stabilise the CP
-
 thiolate ion of the reduced enzyme ready for nucleophilic attack (figure 

1.3). The positively charged R123 lowers the pKa of the thiol by promoting ionisation 

and stabilising the thiolate form through electrostatic influence (Wood et al., 2003). 

Mutation of this residue produces inactive and unstable enzymes, demonstrating its 

importance to catalysis (Montemartini et al., 1999; Nagy et al., 2011). The hydrophobic 

P40 repels solvent molecules, keeping the active site available (Poole, in Flohè and 

Harris, 2007). P40 also interacts with the neighbouring residue (CP – 6; leucine in the 

case of BtPrx3), positioning this residue to act as an H-bond donor to the CP thiolate, 

and an acceptor to T44 (Wood et al., 2003). This prepares the hydroxyl group of T44 to 

accept H-bonds from the substrate, positioning it in the active site for an SN2 reaction 

(Nagy et al., 2011; Flohé et al., 2002). The substrate oxygen atom that reacts with CP 
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(denoted OA, the substrate oxygen distal to CP therefore denoted OB) accepts H-bonds 

from CP, the preceding residue (CP – 1) and R123, and acts as an H-bond donor to T44 

(Nakamura et al., 2009). Examination of multiple structures with bound substrates 

indicate there are a number of positions within the active site where favourable substrate 

interactions can occur, suggesting a “track” along which the substrate can slide, 

stabilising OA and OB whilst allowing the making and breaking of bonds during the 

reaction (Hall et al., 2010). The interactions provide an explanation for the high 

reactivity of Prxs and may also present a possibility for inhibitor design through a 

substrate or transition state mimic that occupies an increased area of the “trough”. 

 

1.2.4 Prxs exist in a number of oligomeric states 

 

Although the active sites are made up of residues from one monomer and the enzymes 

should therefore be able to function as a monomer, only the 1-Cys Prxs yeast 

bacterioferritin co-migratory protein (BCP) and plant PrxQ are known to be functionally 

monomeric (Rouhier et al., 2004; Jeong et al., 2000). Furthermore, many of the typical 

domain-swapped non-covalent homodimers have the ability to oligomerise to form 

higher order structures. This oligomerisation is dynamic and occurs in response to 

environmental factors, with the protein reverting to the dimeric form when conditions 

change (Wood et al., 2002). 

 

The mechanisms involved in oligomerisation are not well understood, but the dimer 

form appears to be associated with high ionic strength, high pH and oxidation; the 

oligomer therefore forming at low ionic strength, low pH and upon reduction of CP 

(reviewed in Wood et al., 2003a). However, the influence of these factors is still under 

question, with some discrepancies in the literature – for example, ionic strength has 

been seen by some groups to encourage Prx oligomerisation (Chauhan and Mande, 

2001), while others suggest it actually inhibits assembly (Papinutto et al., 2005). The 

conservation and evolutionary persistence of this oligomeric switching strongly 
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suggests an important relationship to function, and the study of this feature of Prxs has 

become an area of research interest (Chauhan and Mande, 2001; Matsumara et al., 

2008; Schröder et al, 1998 and Kristensen et al., 1999).  

 

1.2.4.1 The dimer interface relies on non-covalent interactions 

 

The dimer interface forms though an anti-parallel association of the β7 sheets of two 

monomers, stabilised by H-bonds, hydrophobic interactions and salt bridges, and is 

denoted the B-type interface (Wood et al., 2002; Sarma et al., 2005; figure 1.4).  

 

 

Figure 1.4: The dimer interface is stabilised by non-covalent interactions

Anti-parallel association of the β7 sheets leads to dimerisation of monomers. The C-terminal 

arm of each monomer reaches across to contact the active site of the other; monomers are 

coloured blue and grey to highlight this. Labels are shown for the blue monomer only. The 

resolving and peroxidatic cysteine are shown as spheres (although the latter was mutated to 

serine for crystallisation in this case). PDB ID: 1N8J (Wood et al., 2003). 
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When CP becomes oxidised, a large conformational change occurs as the C-terminal arm 

reaches across the interface, allowing CR to contact CP of the other monomer. A disulfide 

bond can now form between the cysteines of the two monomers, covalently linking the 

subunits and forming a domain-swapped dimer. This typically buries ~1000 Å
2 

and 30 

residues per monomer, and represents the stable homodimeric functional unit of typical 

2-Cys Prxs (Wood et al., 2002; Alphey et al., 2000). 

 

1.2.4.2 The oligomer interface is an A-type interface 

 

Prx dimers are able to associate further, into toroidal oligomers which can be composed 

of four, five or six dimers (Wood et al., 2002; Li et al., 2005; Schröder et al., 2001; Cao 

et al., 2005; figure 1.5). A second interface is involved in this association of Prx dimers, 

and appears to be less stable, forming and dissociating in response to a number of 

factors – most notably, redox state. It forms perpendicular to the β sheets through 

contacts between the loop and helix regions of the monomer (figure 1.6). This interface 

– denoted A-type (Sarma et al., 2005) – is more highly conserved and widespread than 

the B-type interface, being recorded throughout all Prx subfamilies and comprising the 

dimer interface of some atypical Prxs such as human PrxV (Declercq et al., 2001). 

These Prxs undergo a redox sensitive monomer-dimer transition, reminiscent of the 

dimer-oligomer behaviour of 2-Cys Prxs (Noguera-Mazon, 2006; section 1.2.5.6), and 

implicating the role of the A-type interface in the redox switch of Prxs. Together, these 

have led to the speculation that the A-type interface preceded the B-type interface in Prx 

evolution (Sarma et al., 2005). 

 

Typical A-type interfaces are stabilised through hydrophobic interactions between 

residues that are mostly located in four regions (referred to as I – IV, as suggested by 

Wood et al., 2002). Region I is made up of the conserved loop-helix of the active site 

(using BtPrx3 numbering for reference – residues 41-45; between the β3 sheet and α2 

helix) and packs against region II (residues 73-85; helix α4). Region III (residues 103-
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104; β5-α5 loop) contacts region IV (residues 116-120; β1’-β2’ hairpin) making less 

extensive hydrophobic interactions (figure 1.6). 

 
 
   A: MtAhpE         B: HsTPx-B        C: BtPrx3 

 
Figure 1.5: Prxs can form different multimers 

Although most Prxs are able to associate into the typical, toroidal oligomer, the composition of 

this toroid can differ. The decamer (demonstrated here with human thioredoxin peroxidase B; 

PDB ID: 1QMV, Schröder et al., 2000 [B]) is the most common; however, octamers (such as 

Mycobacterium tuberculosis AhpE; PDB ID: 1XXU, Li et al., 2005 [A]), further discussed in 

section 1.4.2) and dodecamers (bovine peroxiredoxin 3; PDB ID: 1ZYE, Cao et al., 2011 [C]) 

have been observed. 
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Figure 1.6: The oligomer interface is stabilised by loop and helix interactions 

Region I (red) is composed of residues preceding CP, and interacts with region II (blue), 

comprising residues from helix α4, burying a large hydrophobic area. The loops that make up 

regions III (yellow) and IV (orange) contact each other in a less extensive interaction. The A-

type interface of BtPrx3 is shown as a typical oligomer interface (PDB ID: 1ZYE; Cao et al., 

2005). 

 

1.2.4.3 Catalysis involves conformation changes around the active site 

 

A mechanism for the redox-sensitivity of the A-type interface has been suggested, based 

on comparison between crystal structures of different Prxs in varying oxidation states. 

This involves the CP-loop, which forms above the active site and is comprised of the 

four residues preceding CP (Wood et al., 2002). The later publication of crystal 

structures of both the oxidised and reduced form of the 2-Cys PrxIV supported this 

theory (Cao et al., 2011). However, PrxIV is unique in that it does not dissociate when 

oxidised, so while it can give some information about the changes that occur upon 

oxidation, it may not be representative. Eukaryotic 2-Cys Prxs contain two conserved 

elements – a loop between helix α4 and the β5 sheet containing the GGLG motif; and an 

additional helix at the C-terminal which contains the YF motif (figure 1.7A; Wood et 

al., 2003b).  
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A: A eukaryotic Prx homodimer 

 
 
B: Reduced form   C: Oxidised form 

  

Figure 1.7: Important elements involved in the A-type interface are conserved 

A: PrxIV contains the GGLG motif (green), and the YF motif (cyan) contained in a C-terminal 

helix. B: In reducing conditions the C-terminus is folded into the helix, and CP (shown as 

spheres) is buried in the folded helix α2. C: Upon oxidation, the N-terminal end of helix α2 

unwinds into the disordered CP loop, exposing CP and allowing the disulfide bond to form, 

trapping the loop in this unfolded conformation. Image created using data deposited by Cao et 

al., 2011; PDB ID: Reduced form (left) 3TJF; Oxidised form (right): 3TJG. 

 

 

Prior to peroxidation, when CP is reduced, the loop and helix containing the GGLG and 

YF motifs respectively pack together and bury helix α2 (and, therefore, CP), with CR 

located 14 Å away (figure 1.7B). In order for the catalytic cycle to occur, the active site 

must undergo a conformational change to expose CP and bring CR within 2 Å for 
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disulfide bond formation. This involves at least local unfolding, whereby the first turn 

of helix α2 unwinds to form the disordered CP loop, and expose CP. This region exists in 

dynamic equilibrium between the pre-peroxidatic folded helix (the fully folded – FF – 

form), and locally unfolded (LU) loop, allowing the disulfide bond to form when the 

helix unwinds.  

 

1.2.4.4 Active site unfolding promotes oligomer dissociation 

 

When the α2 helix is fully folded, it pushes region I against region II (helix α4), 

stabilising the interactions which would otherwise be weak (refer to figure 1.6). As the 

helix unwinds, this effect is removed and the interface dissociates. The formation of the 

disulfide bond locks helix-α2 into the LU conformation (figure 1.7C), with the CP loop 

also becoming more mobile and destabilising the A-type interface. This theory was 

based on a comparison of the oligomer of one Prx (AhpC) with the dimer of another 

(HBP23), and, with the lack of crystal structures of both conformations for one 

particular Prx, is therefore somewhat speculative (Wood et al., 2002). 

 

The crystal structure of tryparedoxin peroxidase (TryP) provides some support to this 

proposed mechanism – although the structure is of the reduced enzyme, three of the 

monomers show a locally unfolded active site, confirming that this region exists in 

dynamic equilibrium between FF and LU (discussed in section 1.2.5.3). These 

structures support the gross conformational changes suggested by Wood et al.; 

however, individual interactions differ. It was suggested that the LU state of AhpC leads 

to movement of F42 and exposure of W82, which in turn moves and leads to interface 

restructuring. However, the LU state of TryP did not result in movement of either of the 

equivalent residues (F48 and W87; figure 1.8). Phe50 of TryP (equivalent to Phe44 of 

AhpC), on the other hand, shifts by 5.5 Å, to a position that would project toward the 

other monomer, possibly causing a steric clash and interface dissociation when the LU 

is locked by disulfide bond formation. 
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Figure 1.8: Individual residue movements contribute to interface dissociation 

Overlaying a monomer with a folded active site (blue) with one that is in the locally unfolded 

conformation (light grey) reveals the increased mobility of the CP loop (evident from the 

unwinding around CP and its change in position). F48 and W87 (equivalent to F44 and W82 of 

HBP23 described by Wood et al., 2002) show no significant movement. F50 adopts a different 

position, moving over 5 Å toward the next monomer in the toroid (dark grey), potentially 

introducing a steric clash. Image created using data deposited by Alphey et al., 2000; PDB ID: 

1E2Y. 

 

 

 

Hydrophobicity is known to be important in stabilising interfaces, whereas individual 

interactions determine the specificity of association of transient interfaces (Clothin and 

Janin, 1975). The low stability, and inability of some Prxs to form the A-type interface 

despite high structural conservation, suggests that this interface is more reliant on 

specific interactions than hydrophobic packing. This specificity at the A-type interface 

presumably prevents incorrect assembly with other Prxs within the cell. It also means 

that analysis of the dissociation mechanism cannot necessarily be generalised between 

individual members of the Prx family. Until crystal structures of both oxidised, dimeric 

and reduced, oligomeric states of the same Prx are available, our understanding of the 

dissociation mechanism will be incomplete.  
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1.2.4.5 The implications of Prx oligomerisation are not fully understood 

 

The active site is located near to the oligomer interface. This suggests that oligomer 

formation is key in maintaining the active site in a functional conformation. 

Interestingly, across the different multimers seen throughout the Prx family, it is the 

dimer interface that shifts arrangement, with the oligomer interfaces remaining 

equivalent (Gretes and Karplus, 2013). This further highlights the importance of this 

interface in Prx function. 

 

It is not unusual to find the active site of enzymes located on subunit interfaces, with 

numerous examples of ring-like structures seen in enzymology. For example, cyanase 

exists as a functional decamer (Anderson et al., 1994). However, whereas cyanase 

catalyses the hydrolysis of cyanate in a half-site binding reaction (i.e., stoichiometry of 

2 monomers to 1 substrate molecule), the Prx active site is complete in the monomer. 

Therefore the oligomer must contribute to catalysis through a more subtle mechanism 

than simply bringing two halves of the active site together. There is evidence to suggest 

that the oligomer interface stabilises the FF active site, as mutations that stabilise the A-

type interface enhance catalysis, presumably through impeding the loop movements that 

would usually cause destabilisation (Parsonage et al., 2005). However, with prevention 

of dissociation leading to increased efficiency, this does not explain the necessity of the 

oligomeric switching. It may be that stabilisation of the toroid leads to an increased 

susceptibility to inactivation by hyperoxidation (discussed in section 1.2.4), and so the 

ability to switch quaternary structures is the result of a balance between catalytic 

efficiency and protection against hyperoxidation (Wood et al., 2003b). 
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1.2.5 Hyperoxidation of Prxs suggests roles beyond detoxification 

 

Early studies found that 2-Cys Prx engaged in the catalytic cycle became inactive with 

prolonged exposure to H2O2 (Chae et al., 1994a). Crystallisation of Prxs extracted from 

erythrocytes that had been stored for long periods showed the presence of a sulfinic acid 

– SPO2H – in the active site, suggesting a second oxidation had occurred before the 

disulfide bond formed. This prevented recycling back to the reduced form and thus 

rendered the enzyme inactive (Schröder et al., 2000). Bacterial Prxs were noticed to be 

less susceptible to this “hyperoxidation” than those of plants, mammals or yeast, which 

have even been found further oxidised to sulfonic acid forms – SPO3H (Rabilloud et al., 

2002).  

 

1.2.5.1 Sensitivity to hyperoxidation suggests a role in cell signalling 

 

Sequence alignment identified two features conserved in all Prxs that are prone to 

hyperoxidation –the GGLG motif, and YF motif-containing C-terminal helical 

extension (section 1.2.4.3). These motifs have been shown to be absent from all Prxs 

that cannot undergo hyperoxidation (exclusively prokaryotic; Wood et al., 2003b). As 

the GGLG and YF regions pack against the α2 helix and C-terminus (figure 1.9), the 

unfolding associated with oxidation is impeded, slowing disulfide formation and leaving 

the sulfenic acid vulnerable to further oxidation by H2O2 (Wood et al., 2003b). This is 

supported by mutational studies which show that deletion of the YF-motif containing C-

terminal tail prevents inactivation by hyperoxidation (Koo et al., 2002), and also 

explains the resistance of prokaryotic Prxs, as they lack this C-terminal region 

(Barranco-Medina et al., 2009; Wood et al., 2002). 

 

Initially, the reduction of Prx hyperoxidation in vitro appeared to be impossible, as Trx 

and other reducing agents were ineffective. Conservation of this mechanism throughout 

Prx evolution therefore seemed surprising, as every catalytic cycle regenerates reduced 
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enzymes, susceptible to apparently irreversible inactivation. Later studies revealed that 

in vivo this reaction is in fact reversible, leading to the discovery of sulfiredoxin (Srx) 

(Woo et al., 2003; Biteau et al., 2003). Srx catalyses the regeneration of active Prx 

through an ATP and magnesium
 

dependent mechanism, whereby CP is first 

phosphorylated to allow formation of a thiosulfinate species with Srx. Prx can then be 

released in its sulfenic acid form to be reduced by the normal reductant, and Srx is 

recycled by a Trx (Roussel et al., 2008; Roussel et al., 2009). 

 

A: A hyperoxidation-sensitive Prx  B: A robust Prx   

 

Figure 1.9: Prxs sensitive to hyperoxidation contain an additional helix 

A: The active site of a hyperoxidation-sensitive Prx (human PrxII  PDB ID: 1QMV, Schrӧder et 

al., 2000) is enclosed by the helix containing the YF motif (green) and the loop containing the 

GGLG motif (cyan). B: Robust Prxs (S. typhimurium AhpC, PDB ID: 1YEP, Parsonage et al., 

2005) lack the C-terminal extension and helix, and without the GGLG motif the loop following 

helix α4 folds into an additional helix (indicated in cyan).  

 

Despite its toxicity, H2O2 is sometimes produced intentionally by cells – for example, 

production has been seen in response to wounding (Neithamme et al., 2009). H2O2 is 

now well characterised as an intermediate in numerous signalling pathways (reviewed 

in Veal et al., 2007; Stone and Yang 2006) – for example, platelet derived growth factor 

(PDGF) induces a transient increase in intracellular H2O2 levels, which controls the 
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activity of downstream enzymes through oxidation of active site cysteine residues 

(Chiarugi et al., 2001). The realisation that Prx hyperoxidation was reversible, together 

with previous evidence of Prx’s role in peroxide signalling cascades (Fujii and Ikeda, 

2002) led to the suggestion that Prxs may be the regulators that determine whether H2O2 

acts as a deleterious molecule or a signal (Wood et al., 2003b). This is supported by in 

vivo studies showing that a number of 2-Cys Prxs were inactivated following the 

transient increase in peroxide associated with tumour necrosis factor (Rabbilloud et al., 

2002). Recently, GGLG and YF motifs have been discovered in prokaryotes allowing 

rapid inactivation and reactivation of Prxs, and presenting the possibility of a similar 

signalling role to the eukaryotic enzymes (Pascual et al., 2010). 

 

1.2.5.2 Quaternary structure may determine Prx activity 

 

The number of Prx genes appears to increase with evolution, with higher organisms 

expressing considerably more isoforms than prokaryotes and archaea. This correlates 

with an increased number of subcellular locations, and also the emergence of multiple 

roles for these proteins within the cell. Prxs have been found to have other putative 

functions – for example, a human 1-Cys Prx has been found to have phospholipase A2 

activity, using a different active site, at low pH levels (Kim et al., 1997; Chen et al., 

2000). As higher organisms generally express catalase and GPx, the role of Prxs in 

antioxidant defence appears less critical than in bacteria, which often lack other 

systems. Hyperoxidation has been seen to be coupled to the formation of high molecular 

weight (HMW) structures of up to 1000 kDa in vivo, whose formation can be induced 

by heat shock or H2O2 stress (Jang et al., 2004). This led to the suggestion that these 

HMW structures may have discrete functions. 

 

Chaperone proteins often exist as HMW structures, and the Trx fold has been found to 

play a role in some proteins’ chaperone activity (Kern et al., 2003). The resemblance of 

Prx structures to these chaperone proteins, and the appearance of HMW structures in 

times of cellular stress prompted investigation, and subsequent confirmation, of the in 
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vitro chaperone activity of several human and yeast Prxs. The HMW assemblies of a 

number of Prxs have been seen to effectively reduce protein aggregation of denatured 

proteins, with dissociation of the HMW forms preventing this activity (Moon et al., 

2005; Park et al, 2011). Mutational studies showed CP to be essential for HMW 

formation following H2O2 exposure, implicating hyperoxidation of this residue in 

driving assembly (Moon et al., 2005). However, in some cases, mutation of CP to serine 

has led to the fast formation of HMW complexes, even without H2O2 treatment. This 

suggests that there are two pathways of HMW complex formation: an H2O2-dependent 

pathway that relies on the hyperoxidation of CP; and an H2O2-independent pathway. In 

some cases, hyperoxidation of CP has been seen to lead to the formation of a stable, 

single toroid (Jönsson et al, 2008). The formation of this toroid has been suggested to 

occur through a different mechanism to the reduced toroid (Muthuramalingam et al., 

2009), supporting the theory of H2O2-dependent and H2O2-independent assembly 

mechanisms. A clue to this mechanism was provided by the crystal structure of a Prx in 

complex with Srx (Jönsson et al., 2008), which showed CP to be flipped to the outside of 

the molecule, indicating that assembly of hyperoxidised toroids is very different from 

that of reduced toroids. 

 

The reasons why the hyperoxidised toroids of some Prxs are able to associate further, 

whereas others appear to remain as single stable toroids, is not known. Of the few Prxs 

for which HMW structures have been recorded, a number are mitochondrial. This may 

suggest a link with localisation in regions of high oxidative stress (Gourlay et al., 2003; 

Kato et al., 1985). Prx chaperone activity has been seen to prevent α-synuclein 

aggregation in vitro (Jang et al., 2004). These complexes could therefore exist as a 

protective mechanism, which would explain the overexpression of Prxs in diseases such 

as Alzheimer’s and Parkinson’s disease, which are associated with α-synuclein 

aggregation (Kim et al., 2001). This theory is supported by a recent study which showed 

the protective effects of PrxI when it was overexpressed in an in vitro Alzheimer’s 

model (Cimini et al., 2013). 
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1.2.5.3 Organisation of HMW structures 

 

The structure of HMW forms was one of the earliest recorded features of the Prxs, with 

“cylinder protein” observed in erythrocyte membrane and mitochondrial extracts 

(Harris, 1969; Kato et al., 1985). Since then similar tubes have been reported, 

transpiring to be composed of laterally associated toroids (figure 1.10A). The similarity 

of this tubular assembly to a number of other chaperone proteins (for example, the 

GroEL complex, Xu et al., 1997), supported a possible chaperone function. 

 

Available literature indicates that the appearance of HMW species is widespread across 

the families, with a number of factors influencing their formation including 

hyperoxidation, phosphorylation and presence of metals ions (Jang et al., 2004; Jang et 

al., 2006; Kato et al., 1985). Two examples that report both the structure and chaperone 

function of a HMW species in solution, formed after exposure to oxidative stress, saw 

spherical clusters (figure 1.10D; Jang et al., 2004; An et al., 2011). Although quite 

different to the stacked toroid assemblies, these are reminiscent of yet another Prx 

structure – a dodecahedral cage (Meissner et al., 2007; figure 1.10C and D), which 

again show similarity to other chaperone proteins (for example, Malet et al., 2012). The 

existence of HMW structures often identified through SEC analysis (for example, Moon 

et al., 2005; Jang et al., 2006), and few conclusive studies that directly linking the 

structure and activity, the question of whether the differing morphologies have different 

activities remains unanswered. 

 

The tubular structures seen in early micrographs appear to be the most common 

arrangement when toroids associate, with a number of different groups reporting this 

structure from different Prxs (for example, Harris et al., 2001; Gourlay et al., 2003; 

Saccoccia et al., 2012). The factors controlling this “stacking” of toroids are complex, 

with a number of conditions appearing to drive their formation. The active site has been 

identified as important to the activity and tertiary structure of Prxs (section 1.2.3.2), but 

also has a clear impact on the quaternary structure. Loss of active site architecture has 
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been attributed to the stacking of toroids (Saccoccia et al., 2012), which is supported in 

the increased stacking seen in Prx samples where the active site has been disrupted 

through CP mutation (Gourlay et al., 2003).  

 

 

Figure 1.10: Prxs form a wide range of HMW structures 

A: Early studies revealed tube-like structures in preparations of a mitochondrial Prx (Kato et al., 
1985). B: Small stacks of toroids are seen in preparations of BtPrx3 (Gourlay et al., 2003). C: 
The dodecahedral cage structure was solved by TEM reconstruction (Meissner et al, 2007). D: 
Spherical structures have been seen to form after exposure to oxidative stress (Jang et al., 2004; 
An et al., 2011). 
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The first images of associated tubes were recorded by Harris (1969), as purified Prx1 

from erythrocyte membranes was seen to form small stacks of toroids. Kato et al., (1985) 

reported a similar result with murine Prx3, and went on to demonstrate that the formation 

of stacks and longer tubes required the presence of magnesium
 
ions, with the addition of 

a chelating agent causing dissociation to toroids. BtPrx3 has since been seen to behave 

similarly, with initial characterisation showing small stacks which could be encouraged to 

associate into longer tubes through the mutation of CP (Gourlay et al., 2003; figure 

1.10B). Mutation of CR of BtPrx3 gave rise to the intriguing concatenated crystal 

structure that was later seen to exist in solution (Cao et al., 2005; Cao et al., 2007). 

However, in the case of both the mutant and wildtype BtPrx3, the stacks were recorded 

from samples in which the his-tags have not been removed, which has been seen in this 

thesis and by others to stabilise the oligomer and encourage HMW formation (Cao et al., 

2007; section 4.3.1.3). 

 

1.2.5.4 The “R-type” interface directs toroid stacking 

 

The publication of a crystal structure of two stacked toroids during the course of this 

work gave some insight into the mechanism behind stacking, and potentially a 

physiological relevance of the stacks. Saccoccia et al., (2012) demonstrated that 

lowering the pH encouraged stacking, suggested to be due to the disruption of the R123-

CP ionic bond which stabilises the active site (section 1.2.3.2). When CP is 

hyperoxidised the SPO2H/SPO3H is unable to interact with arginine, and furthermore, 

it’s increased hydrophobicity and volume cause it to move out of the active site pocket, 

disrupting the active site architecture (Saccoccia et al., 2012; Jönsson et al., 2008). 

 

As CP moves out of the active site, helix α2 begins to unwind, preventing the C-

terminus folding and packing against the active site (section 1.2.5.3). This results in a 

shift in the positioning of dimers within the toroid (compared to that of a reduced 

toroid), causing the α6 helix to move into a position which allows the ends of the α2 and 

α6 helices to interact with equivalent helices of dimers in the toroid above or below 
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(figure 1.11). The carbonyl groups of these helices point toward the R-type interface, 

creating a negatively charged area which is stabilised by the positively charged lysine 

and histidine at the end of helix α6 (figure 1.11A). Two polar contacts between the β2 

sheets of monomers further stabilises the interface. Whilst the helical interactions occur 

between dimers directly above and below each other in the stack, the β sheet 

interactions are with the next dimer, contributing to the rotation that is seen between the 

toroids (figure 1.11B and 1.12). 

 

The elucidation of this interface led to a potential explanation for the chaperone activity 

of Prx HMW forms. It had been hypothesised that Prxs bind their unfolded substrates 

via disordered hydrophobic regions (Kumsta and Jakob, 2009). Saccoccia et al. (2012) 

proposed that the unfolded C-termini and active sites in the toroid stack could provide 

the unfolded hydrophobic region (Saccoccia et al., 2012; Angelucci et al., 2013). 

Substrate could therefore bind at the end of the stacks where these regions are exposed. 

This leads to the question of why the toroids associate into long tubes in some cases, 

which would occlude some binding sites; possibly hinting at another, as yet unknown, 

function for the very high weight structures of Prxs. 
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A: Interactions at the R-type interface    B: Cartoon representation of stacked toroids 

 

Figure 1.11: The R-type interface is stabilised by electrostatic interactions 

A: Unwinding of the α2 helix allows contact between this and the α6 helix of the monomer 
below, in the region indicated by the red box. Electrostatic interactions stabilise the interface. B: 
Formation of the R-type interface interactions results in the toroids being rotated at 18° to each 
other. The C-terminal end of the α6 helices in two equivalent monomers in each toroid are 
indicated by stars, which exemplify the rotation, showing an approximate lateral shift of 1.7 nm 
relative to each other (as measured by PyMol analysis [DeLano, 2002]). 

 
Figure 1.12: Each monomer interacts with two others in the stack, causing a pitch 

Monomer B interacts with K from the toroid below, via the α6 and α2 helices. B also makes 
contact with monomer M, further along in the bottom toroid, through the β2 sheets. The toroids, 
therefore, do not align directly on top of each other, but instead are rotated to each other. 
Dimers are coloured alternately light grey and dark grey around the toroid, with labels 
in black and cyan. PDB ID: 3ZVJ. 

50



P a g e  | 29 

 

 

1.3 Human Prxs 

 

Humans express six Prx isoforms: Prx1-4 are typical 2-Cys Prxs, Prx5 is an atypical 2-

Cys Prxs, and Prx6 a 1-Cys Prx. Although the increased number of Prxs in higher 

organisms compared to bacteria would suggest an amount of redundancy within 

mammalian Prxs, this is largely not seen, with knockout mice displaying pathologies 

and shortened lifespan in some cases. 

 

1.3.1 Prx knockouts show oxidative sensitivity 

 

The first Prx to be discovered, torin, is now known to be human Prx2 (HsPrx2), and was 

identified through TEM analysis of a toroidal protein complex comprising 20 kDa 

subunits from human erythrocytes (Harris, 1968; Harris 1969). Since then the human 

Prxs have been found to occur a range of subcellular localisations, and carry activities 

beyond the reduction of peroxides. These are summarised in table 1.1. Their roles in ion 

transport and potential chaperone activity has led to the hypothesis that they have 

significant roles in apoptosis (Low et al., 2008). The severity of knockout mice 

confirms their importance for normal cell function, supported by their promiscuous 

interactions with a number of regulatory and signalling proteins (Jin et al., 1997; 

Hirotsu et al, 1999). Many of the Prxs are upregulated in response to oxidised 

lipoproteins and other indicators of cellular stress, implicating them in the prevention of 

pathologies including atherosclerosis (Shau et al., 1997). Although confirmed in some 

cases through knockout phenotype, (Low et al., 2007; Park et al., 2011b) this 

upregulation is, in many instances, unclear as to whether it is a cause or effect of the 

pathology. It is therefore unsurprising that the regulation of the Prxs has been suggested 

as a potential approach for therapeutics or their use as biomarkers (Cha et al., 2009). 
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1.3.2 Human Prx3  

 

Prx3 was discovered early in Prx research, with the identification of cylindrical 

structures from bovine mitochondria (Kato et al., 1985). Being localised to the 

mitochondria, human Prx3 (HsPrx3) has a key role in the mitochondrial antioxidant 

defence system and homeostasis
 
(Cox et al., 2010). This in turn implicates HsPrx3 in a 

variety of processes including cell differentiation and death, metabolic regulation, 

inflammation and diseases associated with ageing, and recent studies have highlighted 

HsPrx3 as a key player in a number of cancers, notably cervical cancer (Safaeian et al., 

2012; Li et al., 2013).  

 

Table 1.1: Human Prx isoforms undertake essential roles within the cell  

The six isoforms carry out a number of activities beyond their antioxidant function. The severity 

and shortened lifespan of knockout mice (of the murine equivalent Prx) highlights their 

importance, as detailed below. 

Isoform Cellular 
location 

Additional roles Knockout 
phenotype 

Reference 

Prx1 Erythrocyte 
cytosol 

Cell proliferation, 
anti-apoptic 
activity, possibly 
anti-viral 

Haemolytic 
anaemia, 
inflammation and 
cancer, short 
lifespan 

Jin et al., 1997; 
Hirotsu et al, 1999; 
Neumann et al., 
2003 
 

Prx2 Erythrocyte 
cytosol 

Haemoglobin 
stabilisation, 
membrane K

+
 

transport 

Atherosclerosis, 
sensitivity to 
oxidative stress 

Schrӧder et al., 
1998; Schrӧder et 
al., 1999; Han et 
al., 2012; Low et 
al., 2007; Park et 
al., 2011b 

Prx4 Endoplasmi
c reticulum 

Interact with and 
activate NF-κB 

Not available Chang et al, 2011; 
Chen et al., 2002; 
Schulte et al., 2011 

Prx5 Mitochondria, 
cytoplasm 

Anti-apoptotic 
activity 

Shortened lifespan 
through oxidative 
stress 

Radyuk et al., 
2009 
 
 

Prx6 Mitochondria Role in 
reperfusion-
ischemia 
oxidative stress, 
lipid metabolism 

Reduced wound 
healing 

Eismann et al., 
2009; Yang et al., 
2012; Kümin et al., 
2007 
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Although the crystal structure of HsPrx3 has not yet been solved, there is a structure 

available for the bovine homologue (BtPrx3) – which shares 93% sequence identity with 

HsPrx3, and has therefore been taken to be representative of the structure of HsPrx3. 

BtPrx3 shows some unusual structural features – whereas most of the 2-Cys Prxs have 

been seen form oligomers made up of five dimers, BtPrx3 forms a dodecamer. The 

mechanism of Prx3 oligomerisation involves the two typical interfaces – the B-type 

dimer building interface, and the A-type dodecamer building interface (section 1.2.5.1 

and 1.2.5.2). The crystal structure of BtPrx3 shows a buried area of 1772 Å at the B-

type interface, with the oligomer building interface also comprising a large hydrophobic 

area of 1270 Å
2
, principally involving the hydrophobic residues Leu41, Phe43, Phe45, 

Val73, Phe77, Leu103 and Leu120 (Cao et al., 2005; section 5.2.1). This structure was 

only able to be solved with a CR mutation, and therefore a disulfide bonded structure of 

BtPrx3 has not been seen. 

 

Whilst the kinetics and roles of HsPrx3 in a number of pathologies have been the 

subject of a considerable amount of research (for example, Peskin et al., 2007; Peskin et 

al., 2013; Li et al., 2013; Simoni et al., 2007), the structure and self-assembly have 

attracted surprisingly little interest. Generally considered to be a decamer (Winterbourn, 

personal communication), the crystal structure remains to be solved and in depth 

characterisations of the relationship of HsPrx3 oligomerisation to environmental 

conditions is lacking. An understanding of the structural properties of the protein is 

essential if the self-assembly is to be controlled; and insight into the detailed mechanism 

could allow the design of small molecules to influence assembly. As well as the 

nanotechnological implications of controlling Prx assembly (section 1.5), altering the 

oligomerisation could have biomedical applications. 
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1.4 Prxs of Mycobacterium tuberculosis 

 

1.4.1 Components of the Mycobacterium tuberculosis antioxidant 

systems 

 

Mycobacterium tuberculosis (M. tuberculosis) lives in macrophages of the lungs and is 

a pathogenic bacterium responsible for nearly all forms of tuberculosis. The bacterium 

can survive inside the macrophage, despite low levels of nutrients and exposure to ROS 

produced by activated macrophages. Therefore, its antioxidant defence system must be 

extremely efficient. There are some unusual aspects of these antioxidant systems – 

unlike mammals, where the GPxs dominate, M. tuberculosis lacks a glutathione system 

and instead contains a system which includes mycothiol (the mycobacterial substitute 

for glutathione), KatG (a haem-containing enzyme with catalase, peroxidase and 

peroxynitrase activity), and at least five Prxs including AhpC, AhpE and TPx. This 

implicates the Prxs as having a major role in the antioxidant defence system of M. 

tuberculosis (Hugo et al., 2009). 

 

1.4.1.1 M. tuberculosis alkyl hydroperoxide reductase E  

 

M. tuberculosis alkyl hydroperoxide reductase E (MtAhpE) is a 1-Cys Prx found in the 

proteome of M. tuberculosis, and is conserved among many Mycobacteria. Showing a 

relatively low rate of H2O2 reduction (8.2 x 10
4
 M

-1
s

-1
 compared to that of TPx – 4 x 10

7
 

M
-1

s-1; Hugo et al., 2009), MtAhpE appears to be a highly selective peroxidase 

preferentially reducing peroxynitrites. Kinetic studies show the rate of MtAhpE 

peroxynitrite reduction to be equal to that of TPx, which had been thought to be the 

primary enzyme in M. tuberculosis antioxidant defence (rates of 1.9 x 10
7
 and 1.5 x 10

7
 

M
-1

s
-1

 respectively; Hugo et al., 2009; Jaeger et al., 2004; Hu and Coates, 2009) and ten 

times faster than that of catalase peroxidase. This suggests that MtAhpE is highly 
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significant in the pathology of this bacterium, and a possible drug target (Hugo et al., 

2009). Most Prxs and bacterial TPxs show specificity toward alkyl hydroperoxides 

(Choi et al., 2003), so MtAhpE may be the primary defence against peroxynitrites. 

Compromising its function could therefore increase the bacterium’s susceptibility to the 

host immune response. 

 

Although it contains only one cysteine residue (C45 – concluded to be CP by its 

sequence position PxxxTxxC), MtAhpE is structurally more similar to 2-Cys Prxs, with 

AhpC of Salmonella typhimurium (StAhpC) and TryP of Crithidia fasciculata being the 

closest structural homologues, matching with an root mean square difference of 1.4 – 

1.5 Å at the Cα
 
position (Li et al., 2005). The most notable structural differences are the 

lack of the C-terminal helical extension in MtAhpE, which contributes to dimerisation 

in many 2-Cys Prxs (figure 1.13). However, MtAhpE can form non-covalent dimers 

with A-type interfaces equivalent to the oligomer interface of 2-Cys Prxs (section 

1.2.5.2). The enzyme has been suggested to exist as dimers and octameric rings in 

solution, supported by crystal packing data.  

A: The Trx fold          B: The MtAhpE monomer  

        
Figure 1.13: The MtAhpE monomer shows a compact structure 

The crystal structure of MtAhpE shows few extensions to the basic Trx fold. A small N-terminal 
tail adjacent to the β9 sheet, and the α3 helix (numbering as suggested by Li et al., 2005) 
constitute the main extensions to the basic structure, which is considerably less decorated than 
that of a typical Prx (figure 1.2). Arrows refer to structural elements behind the central β sheets. 
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1.4.2 Characterisation of MtAhpE  

 

1.4.2.1 MtAhpE is a 1-Cys Prx with unusual oligomeric properties 

 

Whilst the existence of oligomeric rings is well documented for 2-Cys Prxs, 

biochemical characterisation of the 1-Cys Prxs remains scarce. Many of the 1-Cys 

family are monomeric (for example, Kang et al., 1998), following a similar reaction 

mechanism to the 2-Cys Prxs, relying on the redox cycling of CP. Despite the lack of 

disulfide bond, some of these Prxs have been seen to switch between monomeric and 

dimeric species associated with catalysis (Noguera-Mazon et al., 2006); some further 

association to tetramers has been seen (Kim et al., 2003; Brystrova et al., 2007). The in 

vivo presence or significance of these structures is unknown (Brystrova et al., 2007). 

The dimer interface is usually equivalent to the 2-Cys oligomer interface, and appears to 

be redox sensitive, governed by the local unwinding of helix α2, suggesting similar 

structural events to those of 2-Cys Prxs (Noguera-Mazon et al., 2006, Wood et al., 

2002).  

 

The crystal structure of the 1-Cys Prx MtAhpE has been solved, suggesting an 

octameric ring with an outer diameter of 115 Å and inner diameter 55 Å (Li et al., 2005; 

figure 1.5). Oxidation causes conformational changes around the active site and 

attendant oligomeric changes, similar to typical 2-Cys Prxs (Li et al., 2005). However, 

in contrast to all other known examples, reduced or hyperoxidised MtAhpE forms a 

dimer, with the oligomer forming in oxidising conditions and dissociation of the B-type 

interface governing disassembly. This presents an intriguing situation; a tight A-type 

interface that appears to be resistant to redox-induced dissociation (Li et al., 2005).  

 

There are a number of structural differences that could contribute to this phenomenon. 

Additional C-terminal domains (such as the “arm” that contributes to the domain 

swapped 2-Cys dimer, figure 1.4, or the C-terminal extension that mediates dimerisation 

of hORF6, a related 1-Cys Prx [Choi et al., 1998]) are absent, possibly impeding the 
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rapid formation of a B-type interface and promoting the A-type as the dimer interface.   

C-terminal truncations in some Prxs have been shown to affect oligomeric state (Koo et 

al., 2002) and so this could contribute to the unusual oligomerisation of MtAhpE. An    

N-terminal extension parallel to the β9 sheet that appears to be unique to MtAhpE could 

also contribute to the increased stability of the B-type interface (section 1.3.2.3). A run 

of three proline residues is seen at the C-terminal end of helix α3. Although not an 

uncommon motif at a helical terminus, this motif is not conserved in other Prxs. The A-

type interfaces are generally more flexible than the B-type so the structural rigidity 

conferred by proline residues may contribute to the increased stability of the MtAhpE 

interface.  

 

1.4.2.2 The A-type dimer interface 

 

The MtAhpE A-type interface is principally made up of residues 39-42 from the β3-α2 

loops, 72-76, 79 and 83 from helix α3, 94-97 from the β3-α4 loop, 110-113 from the β6- 

β7 hairpin loop. This creates an interface which is 70% hydrophobic, with important 

contributions from Leu39, Phe41, Pro75, Ile79, Phe94, Trp95 and His97 (figure 1.14). 

These reflect the regions I – IV of typical 2-Cys Prxs (section 1.2.5.2; figure 1.15). 

 

Interestingly, this interface can be destabilised through the formation of a disulfide bond 

with a free thiol group (Hugo et al., 2009). Although the dissociation of this interface is 

not seen in solution, this suggests that, like other Prxs, the quaternary structure of 

MtAhpE could be influenced by redox state, perhaps similar to another 1-Cys Prx that 

dimerises with an A-type interface – Populus tremula D-Prx. The dimer of this Prx is 

destabilised when CP is reduced by GSH (Noguera-Mazon et al., 2006).  

57



P a g e  | 36 

 

 

 

Figure 1.14: The MtAhpE A-type interface is stabilised by hydrophobic interactions 

The interface is stabilised by interactions focused in the regions suggested by Wood et al., 

(2002). Side chains of major hydrophobic contributors are shown as sticks, labels are shown for 

the right hand monomer only for clarity. Region I is shown in red, region II is blue, region III is 

yellow, region IV is orange. PDB ID: 1XXU (Li et al., 2005). 

 

 

Figure 1.15: Sequences of Prxs show homologous interface regions 

Regions I-IV (coloured as in figure 1.13) of the decamer interface of AhpC correspond to 

regions of the dimer interface MtAhpE (Wood et al., 2002; Li et al., 2005). The secondary 

structure elements of MtAhpE are shown below the sequence, that of AhpC above.  
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1.4.2.3 The B-type octamer interface 

 

The octamer interface is less well studied than the dimer interface of MtAhpE, but has 

been considered be analogous to that of other Prxs, as the protein can form similar 

toroids which can go on to form HMW structures (such as tubes of stacked rings, Li et 

al., 2005). Interaction predictions using PDBePISA (Krissinel and Henrick, 2007) 

software suggested that this interface is discontinuous, comprised mostly of residues 

from the β9 sheet (figure 1.16). The unique N-terminal tail interacts with β9 of the other 

monomer (homologous to β7 of 2-Cys Prxs), stabilising the B-type interface (Li et al., 

2005; figure 1.16). 

 

 

Figure 1.16: The B-type interface of MtAhpE is less extensive than the A-type interface 

The N-terminal tails interact with the β9 sheets of both their own monomer and the adjacent 

monomer, forming H-bonds. The relevance of this interface is questioned due to its small area 

and flexible regions involved. PDB ID: 1XXU (Li et al., 2005). 
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1.4.2.4 The active site of MtAhpE 

 

The reduced active site of MtAhpE shares the universal architecture, with CP stabilised 

by Arg116, Thr42 making the typical H-bonds (section 1.2.3.2), and the conserved 

Pro38 repelling solvent molecules. The loop between β9 and α5 covers the active site 

(figure 1.17A). The typical network of stabilising interactions can therefore occur 

(section 1.2.3.2; Li et al., 2005). The residues preceding CP are involved in the A-type 

interface, as with typical Prxs.  

 

When oxidised, with no CR to bond with, CP appears to rotate, R116 flips outward and 

the β9-α5 loop moves, forming a channel ~7 Å wide, allowing the reductant to enter and 

reach CP (figure 1.17B; Li et al., 2005). A shift is seen at the end of the CP containing 

helix, but the helix unwinding seen in typical Prxs does not occur which could be key in 

the redox-insensitivity of the MtAhpE dimer interface. 

 
 
A: Reduced       B: Oxidised 

 

Figure 1.17: Significant changes occur in the active site with redox state 

A: In the reduced state CP and R116 point toward each other, forming an architecture similar to 

that of the 2-Cys Prxs (section 1.2.3.2). B: Once oxidised some helix unwinding is seen, but not 

to the extent of typical Prxs. R116 moves away from the active site, as does the β9-α5 loop, 

forming a channel through which reductant can access CP. PDB ID: 1XXU (Li et al., 2005).. 
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MtAhpE is therefore an interesting member of the 1-Cys family – structurally more 

similar to typical 2-Cys Prxs (see section 3.2), but with an A-type interface which is not 

sensitive to changes in redox conditions. Although these features have been suggested 

by previous studies (Li et al., 2005), extensive biochemical characterisation had not 

been carried out.  

 

1.5 Self-assembling proteins in nanotechnology 

 

One of the first and most fundamental challenges of nanotechnology is the formation of 

desired shapes (Kim and Whitesides, 1995). While huge advances have been made in 

casting, moulding and other techniques, self-assembly is becoming recognised as a 

powerful approach to generating structures with a range of sizes and complexities, while 

at the same time minimising the manufacturing required (Kim and Whitesides, 1995).  

 

With the concept of nanotoxicology becoming a growing concern (Thorley and Tetley, 

2013), the exploitation of natural systems has obvious advantages over conventional 

materials used in nanotechnology. The intrinsic self-assembling nature of many 

biological molecules, coupled with the precision and functionality that these molecules 

can provide, at a low cost of production, makes them extremely attractive as building 

blocks for nanomaterials, and has become an important aspect of bottom-up 

manufacturing (Mendes et al., 2012). 

 

The self-assembly properties of nucleic acids have been manipulated to generate 2-

dimensional (2D) arrays and 3-dimensional (3D) objects (Rothemund, 2006; Doll et al., 

2013), as well as dynamic structures that change shape in response to stimuli (Seeman, 

2005). Although these advances are a promising step toward functional nanodevices, the 

use of nucleic acids is hindered by the limited architecture available and difficulty in 

functionalising the structures (Jaeger and Chworos, 2006). Lipids, saccharides and 

carbohydrates have all been explored as building blocks for supramolecular materials 
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(reviewed in Mendes et al., 2012), with significant success seen in the use of peptides in 

this area (for example, Mendes et al., 2012). Although synthesis of peptides is easy, the 

process is expensive; and whilst functionalising the subunits is more successful than 

other materials, the structures are quickly disrupted and tolerate only small 

modifications (Matsui et al., 2001; Nuraje et al., 2004). Proteins have long been 

recognised for their potential in nanotechnology, with the multiple interactions that 

drive their self-assembly offering the possibility of fine control over the assembly 

process, and a high degree of directionality. Considerable progress has been made in 

creating artificial protein constructs with predictable assembly properties, with a 

number of useful building blocks (or tectons) emerging (Miranda et al., 2009; Ballister 

et al., 2007; Medalsy et al., 2008). The formation of protein nanotubes has been 

achieved, with some level of control over the length and reversibility of the structures 

(Miranda et al., 2009; Ballister et al., 2007; Medalsy et al., 2008). However, an obstacle 

in the development of the field is the paucity of stable protein tectons with the ability to 

self-assemble into a variety of nanoarchitectures. The flexibility and functional diversity 

that comes from having 20 chemically different amino acid constituents does, of course, 

bring with it a new level of complexity, meaning that despite their promising nature, the 

use of proteins as tectons for nanostructures is not trivial.  

 

In nanotechnology, tectons are molecules which aggregate into assemblies of controlled 

geometries (Su et al., 1995). The repertoire of structures available to the Prx family 

provide an exciting possibility for their use as tectons in nanotechnology. A deeper 

understanding of the conditions that prompt the formation of discrete Prx structures 

could enable them to be used as switchable devices which form tubes, cages or rings 

upon exposure to an environmental trigger; with the potential to disassemble or 

associate into a different structure when conditions change. 

 

The high molecular weight forms of Prxs adopt shapes that have been identified as 

particularly useful natural assemblies (section 1.2.5.3; Heddle, 2008), and similar 

protein structures have developed for nanotechnological applications. For example, cage 
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structures formed by ferritin-like protein (FLP) have been used to provide an isolated 

environment in their internal cavity, in which nanoparticles of iron oxide were grown 

(Allen et al., 2002). The potential to use protein nanotubes as scaffolds to grow 

nanowires of electrodes has been highlighted (Valenzuela et al., 2008), but to this date 

directed self-assembly with a variety of supramolecular structures from one protein has 

not been achieved.  

 

1.6 Summary and significance of this research 

 

Until the last decade, research into Prxs was scarce, and as a consequence the details of 

their structure-function relationship are not fully unravelled. Detailed structural studies 

on the Prxs are still scarce, further complicated as new data reveals aspects of 

experimental procedure previously thought to be unimportant to have potentially 

significant impacts on Prx structure (further discussed in chapter four).  

 

Although a vaccine and multiple drugs are available, tuberculosis (TB) still kills around 

1.3 million and infects over 8 million people a year (World Health Organisation report, 

2013), with little improvement being made to these figures each year. Thus, drug 

development is a very active field of TB research, and the identification of new drug 

targets is essential. Cervical cancer kills over 270,000 women each year (American 

Cancer Society report, 2013), and more than five million people in America are 

currently living with Alzheimer’s (Alzheimer’s Association 2013). Further research into 

MtAhpE and HsPrx3 therefore has clear importance from a biomedical perspective. 

 

Homo-oligomeric structures remain somewhat mysterious, with their formation and 

poorly understood in many cases (Devenish and Gerrard, 2009). Understanding of the 

interactions that are involved often opens up new avenues for drug design (Higuerueol, 

et al., 2009). Furthermore, with elucidation of the exact interactions involved, comes the 

potential to control the formation of these structures. The two systems studied in this 
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thesis present self-assembling toroids with different dimensions. A deeper 

understanding and comparison of the mechanisms which result in different quaternary 

arrangements from structurally similar subunit could highlight the use of Prxs as 

templates for designing molecules which self-assemble into toroids of tuneable size.  

 

To be able to explore avenues to alter the oligomeric properties, the quaternary structure 

of the proteins must be known. The first aim of this project was therefore to elucidate 

the quaternary structure of MtAhpE in solution (chapter three), and identify the 

structural changes that were brought about by environmental factors. The factors in the 

unusual stability of the A-type interface were of interest, and the second part of chapter 

three sought identify key residues in this stability, through the introduction of 

mutations. This approach was also used to pursue the possibility to alter the quaternary 

structure of MtAhpE.  

 

The second system that was investigated was the 2-Cys HsPrx3. The quaternary 

structure of HsPrx3 was previously in question; therefore, answering this issue was the 

first goal of the HsPrx3 work. A detailed characterisation of the oligomeric state of 

HsPrx3 in a number of conditions was the next goal, in order to unravel the factors that 

influence assembly. Discrepancies in the literature have led to an unclear picture of Prx 

assembly, and so consideration of subtle elements of in vitro practices including 

purification techniques and the use of affinity tags was important. An increased 

knowledge of these factors allowed the prediction of mutations which would alter self-

assembly in a controllable way; and these were subsequently introduced.  

 

Finally, given the potential uses for tube or cage structures in nanotechnology, the 

formation of such structures and conditions that encouraged their assembly were 

investigated in the case of HsPrx3. Hypotheses regarding the mechanisms of HMW 

self-assembly were tested, with the aim to develop robust and reproducible methods of 

producing physically homogeneous preparations of HMW structures. Visualisation of 

these structures was important. Solving the structure of the HMW assemblies through 
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transmission electron microscopy (TEM), to a resolution that allowed identification of 

the interactions was the final goal of this project, in order to elucidate an assembly 

mechanism.  
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Chapter 2 Materials and Methods 

 

2.1 Materials 

 

2.1.1 Chemicals 

 

Unless otherwise stated all chemicals were obtained from Sigma-Aldrich (Auckland, 

New Zealand), or Invitrogen (Victoria, Australia). Sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) gels were supplied by Invitrogen, and 

protein ladders by BioRad. Protein standards for gel filtration calibration were also 

obtained from BioRad. Chromatography media were obtained as pre-packed columns or 

loose gel from GE Healthcare Lifesciences (Auckland, New Zealand). Milli-Q H2O was 

produced in house using an Advance A10 Water Purification System (Millipore). 

 

2.1.2 Enzymes 

 

Polymerase, polymerase chain reaction (PCR) enzymes and horse radish peroxidase 

(HRP) were obtained from Invitrogen (Victoria, Australia). Recombinant Tobacco Etch 

Virus (rTEV) protease plasmid was obtained from in house stocks in the Lott 

Laboratory (University of Auckland), the pMHT238Δ construct had been produced 

previously in the laboratory and seen to give high yields of soluble protein (see section 

2.3.3.1).  
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2.1.3 Bacterial strains 

 

All media and equipment for bacterial culture were sterilised by autoclaving prior to 

use, or were purchased sterile. All bacterial work was carried out under sterile 

conditions either in a laminar flow hood or with an updraft generated by a flame, and 

standard aseptic technique was employed (Bykowski and Stevenson, 2008). A number 

of E. coli strains were used throughout this research for plasmid propagation and 

storage, cloning, and protein expression (Terpe, 2006). Competent cells of each strain 

were either purchased from Invitrogen or home-made as detailed in section 2.2.1.  

 

XL1-Blue (Stratagene [1998]; genotype – recA1, endA1, gyrA96, thi-1, hsdR17, 

supE44, relA1, lac [F´ proAB lacI
q 

Z∆M15 Tn10 (Tet
R
)]) and DH5α (Invitrogen, 2004; 

genotype – F
-
 φ80lacZ∆M15 ∆[lacZYA-argF]U169, recA1, endA1, hsdR17, (rk-, mk+), 

phoA, supE44, thi-1, gyrA96, relA1, tonA) cells were used as cloning and plasmid 

propagation host to give high miniprep quality and DNA stability.  

 

Rosetta(DE3) (Novagen, 2013; genotype – F
- 

ompT hsdSB[B
-
 mB

-
] gal dcm [DE3] 

pRARE [Cam
R
])  competent cells were used for HsPrx3 and MtAhpE protein 

expression, chosen as the pRARE codon which supplies tRNAs for the rare codons of 

HsPrx3 and MtAhpE (appendix 4; Terpe 2006), and the cells contain the gene for T7 

RNA polymerase allowing expression from the pET vector used for HsPrx3 expression. 

The cells also recognise the trc promoter allowing expression from the pProEx vector 

used for MtAhpE.  

 

BL21 (DE3) RIPL codon plus (Stratagene; genotype – F
–
 ompT, hsdS(rB

–
 mB

–
), dcm

+
, 

Tet
R
, galλ(DE3), endA, Hte [argU proL Cam

R
] [argU ileY leuW Strep/Specr]) were 

used for expression of rTEV as they allow expression of rare codons including ArgU, 

which is important for high levels of protein (Kapust, 2002; Blommel and Fox, 2007). 
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2.1.4 Plasmids 

 

The MtAhpE gene – Rv2238c from M. tuberculosis genomic DNA – was gratefully 

received from collaborator Dr Shaun Lott at Auckland University, cloned into pProEx 

with NcoI and SacI restriction sites. The HsPrx3 gene was originally obtained from Dr 

Mark Hampton in the Christchurch School of Medicine, and subsequently cloned into a 

pET151/D-TOPO vector (Novagen, 1999) by Pam Zhu in the Gerrard laboratory. 

pET151 contains the pBR322 origin of replication and the lac operator, allowing 

induction of expression through the addition of isopropyl galactosidase IPTG (section 

2.1.6 and 2.3.1). The vector used harbours an N-terminal 6xHis tag and rTEV cleavage 

site, the bla gene encoding beta-lactamase for ampicillin (Amp) resistance, and 

expression is under the control of the bacteriophage T7 promoter.  

 

The pProEx expression system was used for expression of MtAhpE, which is inducible 

by addition of IPTG. The plasmid harbours an N-terminal 6xHis tag and the bla gene 

for Amp resistance.  

 

2.1.5 Media  

 

All media and containing vessels to be used for bacterial culture were sterilised by 

autoclaving prior to use. Media were stored at 4°C if not immediately used, for no more 

than two days. Antibiotics and other additives were added to the required final 

concentration just prior to use (section 2.1.6). 

 

Lysogeny Broth Medium (LB): LB Broth Base was supplied in ready to use powder 

from Invitrogen. 20 g was added to 1 L of deionised water, to give a composition of 10 

g peptone, 5 g yeast extract, and 5 g NaCl per L (Bertani, 1951).  
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LB agar: 15 g of agar was dissolved in 1 L of LB medium, sterilised by autoclaving and 

stored sealed at room temperature. Prior to use the agar was melted by microwaving, 

and plates poured using appropriate aseptic technique.  

 

Super Optimal Broth (SOB): 20 g bacto-tryptone, 5 g bacto-yeast extract, and 0.5 g 

NaCl were added to 10 mL of a 250 mM KCl solution. Milli-Q water was added to 

bring the volume to 1 L, and the pH adjusted to 7.0. 5 mL of sterile 2 M MgCl2 solution 

were added just prior to use (Hanahan, 1983). 

 

SOB with catabolite suppression (SOC): SOC medium was prepared by supplementing 

SOB medium with 1.8% [v/v] glucose. 

 

ZY media: 10 g tryptone and 5 g yeast extract were added to 925 mL of Milli-Q H2O 

(Studier, 2005). 

 

2.1.6 Antibiotics and other media additives 

 

Stock solutions of antibiotics were made up in the appropriate solvent and stored at          

-20°C until use. They were added directly to the medium or agar at a dilution to give the 

desired working concentration (detailed in table 2.1). Stock IPTG was made up to a 

concentration of 0.6 M and added to the medium at a 1/1000 dilution to give a working 

concentration of 0.6 mM. 
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Table 2.1: Antibiotic concentrations 

Antibiotics were dissolved in deionised water with the exception of chloramphenicol which was 

dissolved in ethanol. 

Antibiotic Stock concentration Working concentration 

Kanamycin (Kan) 50 mg/ mL 25 μg/ Ml 

Ampicillin (Amp) 100 mg/ mL 100 μg/ Ml 

Chloramphenicol (Cam) 35 mg/ mL 35 μg/ mL 

Tetracycline (Tet) 100 mg/ mL 100 μg/ Ml 

 

 

2.1.7 Oligodeoxyribonucleotides 

 

Table 2.2 presents the oligodeoxyribonucleotides primers that were used during this 

research for PCR amplification. Differences to the genomic sequence used for site-

directed mutagenesis (SDM) are shown in bold and underlined. Primers were designed 

following the guidelines in the QuikChange® SDM kit (Stratagene, 1998). PrimerX 

online software (Lapid, 2003) was used to characterise primers and ensure formation of 

secondary structures or primer dimers would be minimal. Oligodeoxyribonucleotides 

were synthesised by Invitrogen or Integrated DNA Technologies, Inc. (IDT, Coralville, 

IA, USA). 

 

2.1.8 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) 

 

SDS-PAGE analysis (Shaprio et al., 1967) was carried out using Novex® Sharp pre-

stained protein ladder to provide molecular mass markers on gels, which give 12 bands 

marking masses from 3.5 to 260 kDa. BioRad pre-stained protein ladder was also 

routinely used, which give 12 bands marking masses from 2 to 250 kDa. 
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Table 2.2: Primers used for PCR reactions 

The above primers were used throughout this research for SDM and sequencing of the pProEx 

vector. Sequencing of genes in the pET151 vector was carried out using standard T7 primers. 

Primer Gene 

Target 

Sequence (5’ to 3’) 

T104W 

Forward 

 

HsPrx3 

 

CGCACTCTTGTCAGACTTATGGAAGCAGATTTCCCGAGAC 

T104W 

Reverse 

 

HsPrx3 

 
GTCTCGGGAAATCTGCTTCCATAAGTCTGACAAGAGTGCG 

W95A 

Forward 

 

MtAhpE 

 

CTGTTGTCGGACTTCGCGCCACACGGCGCGGTC 

W95A 

Reverse 

 

MtAhpE 

 

GACCGCGCCGTGTGGCGCGAAGTCCGACAACAG 

T76A  

Forward 

 

MtAhpE 

 

GTGGGCCCGCCACCCGCGCACAAGATCTGGGC 

T76A  

Reverse 

 

MtAhpE 

 

GCCCAGATCTTGTGCGCGGGTGGCGGGCCCAC 

E109A 

Forward 

 

MtAhpE 

 

GCGTCTTCAACGCGCAGGCCGGCATC 

E109A 

Reverse 

 

MtAhpE 

 

GATGCCGGCCTGCGCGTTGAAGACGC 

Q83A 

Forward 

 

MtAhpE 

 

CAAGATCTGGGCGACGGCGAGCGGATTCACGTTTC 

Q83A  

Reverse 

 

MtAhpE 

 

GAAACGTGAATCCGCTCGCCGTCGCCCAGATCTTG 

Sequencing 

primer 
MtAhpE AACGACCGAAAACCTGTAT 

C47S 

Forward 
HsPrx3 CCTTTGGATTTCACCTTTGTGAGTCCTACAGAAATTGTTGC 

C47S 

Reverse 
HsPrx3 

GCAACAATTTCTGTAGGACTCACAAAGGTGAAATCCAAA

GG 

S78A 

Forward 
HsPrx3 GTGGATTCCCACTTTGCCCATCTTGCCTGG 

S78A 

Reverse 
HsPrx3 CCAGGCAAGATGGGCAAAGTGGGAATCCAC 

 

 

Gels were either obtained commercially from Invitrogen, or home-made in gel casters, 

composed of a resolving gel to separate proteins by molecular mass, topped with a 

stacking gel. A resolving gel was made (see table 2.3), then 100 μL of 10% [w/v] 

ammonium persulfate (APS) and 10 μL tetramethylethylenediamine (TEMED) added to 

induce polymerisation. This was poured into the gel cast leaving a 1 cm gap at the top 
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and a layer of isopropanol added to create a smooth surface. Once set, the isopropanol 

was poured off and the gel rinsed with distilled water. A stacking gel was made (see 

table 2.3), then 50 μL of 10% [w/v] APS and 5 μL TEMED added and poured on top of 

the resolving gel. A ten or fifteen tooth comb was placed into the top of the gel to create 

wells. Quantities described were sufficient for one gel. Typically, 5 – 10 gels would be 

made, and stored wrapped with wet towels at 4°C. 

 

Table 2.3: SDS-PAGE gel recipes 

Gels were home-made according to the following recipes. 

Solutions Resolving Gel Stacking Gel 

30% [w/v] Acrylamide 4  mL  0.7  mL  

Resolving Buffer (section 2.1.9.4) 2.6  mL  0  mL  

Stacking Buffer (section 2.1.9.4) 0  mL  1.25  mL  

10% [w/v] SDS 0.1  mL  0.05  mL  

Milli-Q H2O 3.2  mL  3  mL  

Bromothymol Blue 0  mL  1 Drop 

 

 

Pre-made gradient gels were also routinely run using a NuPAGE®
 
system from 

Invitrogen.  

 

2.1.9 Buffers and solutions 

 

2.1.9.1 Buffers and solutions for protein purification 

 

Lysis mix: 100 mg lysozyme, 25 mg RNase A, 5 mg DNase I, 1 mL 1 M MgCl2 made 

up to 5 mL with Milli-Q H2O. 

 

85



P a g e  | 64 

 

 

Lysis buffer: 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 150 

mM NaCl, 10 mM imidazole, 100 μL lysis mix per 10  mL, complete mini protease 

inhibitor (Roche Applied Science); pH 8.0. 

 

2.1.9.2 Buffers and solutions for chromatography 

 

Immobilised Metal Affinity Chromatography (IMAC) column stripping buffer: 20 

mM NaH2PO4, 0.5 mM NaCl, 50 mM ethylenediaminetetraacetic acid (EDTA); pH 7.4 

(GE Healthcare, 2005) 

 

IMAC loading buffer: 20 mM HEPES, 150 mM NaCl, 10 mM imidazole; pH 8.0. 

 

IMAC elution buffer: 20 mM HEPES, 150 mM NaCl, 500 mM – 1 M imidazole; pH 

8.0. 

 

Gel filtration running buffer: 20 mM HEPES, 150 mM NaCl, pH 8.0.  

 

Reducing buffer: 20mM HEPES, 50 mM NaCl, 2 mM tris(2-carboxyethyl)phosphine 

(TCEP) pH 8.0. 

 

Chelation buffer: 20mM HEPES, 50 mM NaCl, 2mM EDTA pH 8.0. 

 

2.1.9.3 Buffers and solutions for circular dichroism 

 

Circular Dichroism (CD) buffer: 5 – 20 mM NaH2PO4; pH 7.5. 

 

2.1.9.4 Buffers and solutions for SDS-PAGE 

 

Resolving buffer: 375 mM Tris/HCl, 0.1% [w/v] SDS; pH 8.8. 
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Stacking buffer: 200 mM Tris/HCl, 0.1% [w/v] SDS; pH 6.8. 

 

Sample loading buffer: 4 mL stacking buffer, 4 mL glycerol, 0.8 g SDS, 400 μl β-

mercaptoethanol (BME). 

 

Running buffer: 20 mM Tris-HCl, 192 mM glycine, 0.1% [w/v] SDS; pH 6.8. 

 

2-(N-morpholino)ethanesulfonic acid (MES) buffer: (10x stock) 40 mM MES, 100 

mM NaAc, 10 mM EDTA, pH 7.0. 

 

Coomassie stain: 0.1% [w/v] Coomassie Brilliant Blue R250, 50% [v/v] methanol, 40 

% [v/v] Milli-Q H2O, 10% [v/v] glacial acetic acid. 

 

Coomassie destain: 50% [v/v] Milli-Q H2O, 40% [v/v] methanol, 10% [v/v] glacial 

acetic acid. 

 

2.1.9.5 Buffers and solutions for mass spectroscopy 

 

Matrix solution: 30 mg ferulic acid dissolved in 0.5 mL 2-propanol and 0.5 mL 0.5% 

trifluoroacetic acid (TFA). 

 

2.1.9.6 Buffers and solutions for plasmid extraction 

 

Buffer S1: 50 mM Tris-HCl, 10 mM EDTA, 100 µg/mL RNase A, pH 8.0. 

 

Buffer S2: 200 mM NaOH, 1% SDS. 

 

Buffer S3: 4.2 M guanadinium HCl, 900 mM potassium acetate, pH 4.8. 

 

Wash Buffer: 10 mM Tris-HCl, 80% ethanol, pH 7.5. 
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Tris-EDTA (TE) Buffer: 10 mM Tris-HCl, 1 mM EDTA, pH 8.0. 

 

2.1.9.7 Buffers and solutions for DNA electrophoresis 

 

Tris-acetate-EDTA (TAE) buffer: 40 mM Tris-acetate, 1 mM EDTA, pH 8.3. 

 

2.1.9.8 Buffers and solutions for rTEV purification 

 

rTEV lysis buffer: 20 mM NaH2PO4, 500 mM NaCl, 0.3 mM TCEP, 50 mM imidazole, 

pH 7.5 (Blommel and Fox, 2007). 

 

rTEV storage buffer: 50 mM Tris-HCl, 0.5 mM EDTA, 1 mM DTT; pH 8.0 (Blommel 

and Fox, 2007).  

 

rTEV IMAC elution buffer: 20 mM NaH2PO4, 500 mM NaCl, 0.3 mM TCEP, 500 mM 

imidazole, pH 7.5 (Blommel and Fox, 2007). 

 

2.1.9.9 Buffers and solutions for autoinduction 

 

50x 5052: 250 g glycerol, 25 g glucose, 10 g lactose, 730 mL Milli-Q H2O (Studier, 

2005). 

 

20x NPS: 500 mM (NH4)2SO4, 1 M KH2PO4, 1 M Na2HPO4, pH 6.75 (Studier, 2005). 

 

2.1.9.10 Buffers and solutions for peroxidase activity assay 

 

Assay buffer: 100 mM potassium phosphate, 0.1 mM diethylene triamine pentaacetic 

acid (DTPA), pH 7.5 made up in ultrapure water (Thermo Fisher Scientific Inc.). 
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Stock BME: 20 mM in ultrapure water, adjusted to pH 7.5 with 3 M KOH in ultrapure 

water. 

 

2.2 Molecular biology 

 

2.2.1 Competent cells 

 

2.2.1.1 Making chemically competent cells 

 

A fresh plate was streaked from glycerol stocks (section 2.2.2.1) of chemically 

competent cells using a sterile pick or flame-sterilised nichrome wire. This was 

incubated overnight at 37°C, and a single colony used to inoculate 10 mL of LB and 

incubated overnight at 37°C, with shaking at 160 rpm. The 10 mL culture was added to 

a 200 mL flask of LB, and incubated with shaking at 160 rpm, 37°C until the optical 

density (OD) reached ~1. Cells were harvested by centrifugation at 3,500 rpm, 4°C for 

15 minutes and resuspended gently in 1/5 the original volume of 0.1 M CaCl2. 

Centrifugation was repeated, and the pellet resuspended in 1/25 the original volume of 

0.1 M CaCl2. 100 µL aliquots were dispensed into 1 mL Eppendorf tubes and flash 

frozen to be stored at -80°C (Inoue et al., 1990). 

 

2.2.1.2 Making electrocompetent cells 

 

200 mL cultures were produced from glycerol stocks of electrocompetent cells as for 

chemically competent cells (section 2.2.1.1), and incubated similarly until the OD 

reached ~0.3 (no higher than 0.4). At this point the culture was placed on ice and 

swirled occasionally to speed cooling. Cells were harvested by centrifugation at 2,500 

rpm for 20 minutes at 4°C. The supernatant was decanted and the cells washed by 

resuspending in 200 mL distilled water. This wash step was repeated twice, the second 
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time resuspending in 100 mL distilled water. Cells were harvested as before, and the 

resulting pellet resuspended in 200 mL of 10% glycerol. The suspension was 

centrifuged at 2,500 rpm for 20 minutes, and the supernatant removed, this time by 

gentle aspiration as glycerol destabilises the pellet. The pellet was resuspended in 2 mL 

10% glycerol, and 50 µL aliquots dispensed into cryovials, flash frozen and stored at -

80°C. 

 

2.2.1.3 Transformation of chemically competent cells 

 

An aliquot of chemically competent cells was taken from -80°C storage and thawed 

gently on ice. 1 µL of DNA was added, mixed gently with a pipette tip and the 

transformation mixture incubated on ice for 30 minutes. Cells were heat shocked in a 

heating block at 42°C for 45 seconds, then immediately placed on ice for 2 minutes to 

cool. 1 mL of sterile LB, pre-warmed to 37°C, was added to the cells and the mixture 

incubated at 37°C with shaking at 250 rpm for 1 hour. Cells were harvested with 

centrifugation at 4,000 rpm for 10 minutes, most of the media decanted and the pellet 

resuspended in the remaining media (~50 µL). This was spread onto a plate containing 

the appropriate antibiotics and incubated overnight at 37°C. 

 

2.2.1.4 Transformation of electrocompetent cells 

 

A vial of electrocompetent cells was taken from -80°C storage and thawed gently on 

ice. 1 µL of DNA was added, mixed gently with a pipette tip and the transformation 

mixture incubated on ice for 30 minutes. The mixture was transferred to a pre-chilled 1 

mm electroporation cuvette, and placed into the electroporator (BioRad Gene Pulser
TM

). 

A 2.5 kV pulse was applied and 1 mL room temperature sterile LB added immediately. 

The solution was transferred to an Eppendorf tube and incubated at 37°C with shaking 

at 250 rpm for 1 hour. Cells were harvested with centrifugation at 4,000 rpm for 10 

minutes, most of the media decanted and the pellet resuspended in the remaining media 

90



P a g e  | 69 

 

 

(~50 µL). This was spread onto a plate containing the appropriate antibiotics and 

incubated overnight at 37°C. 

 

2.2.2 Bacterial culture 

 

Agar plates containing the appropriate antibiotics (section 2.1.6) were streaked with the 

desired strain from a fresh transformation (section 2.2.1.3 and 2.2.1.4) using a sterile 

pick or flame-sterilised nichrome wire. Plates were incubated overnight at 37°C. Single 

colonies were picked and used to inoculate 5 mL of LB medium containing appropriate 

antibiotics. Starter cultures were incubated overnight at 37°C with shaking at 160 rpm, 

and subsequently used to inoculate larger quantities of media (section 2.3.1).  

 

2.2.2.1 Glycerol stock preparation 

 

Glycerol stocks were prepared for longer term storage of bacterial strains and cells 

transformed with plasmids of interest. 5 mL cultures were grown as described above, 

then used to inoculate 250 mL sterile LB. This was incubated at 37°C until the OD600 

was about 0.6, then centrifuged at 3000 rpm for 15 minutes at 4°C. The pellet was 

resuspended in 250 mL ice cold, sterile 30% glycerol. Centrifugation was repeated and 

supernatant discarded, then the pellet resuspended in 20 mL 30% glycerol. The resulting 

cell suspension was split into 1 mL aliquots in screw-top cryo-vials, flash frozen and 

stored at -80°C.  
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2.2.3 Polymerase chain reaction (PCR) 

 

PCR was used to carry out SDM (Flavell et al., 1975) to introduce single amino acid 

changes to the wildtype protein primary structure. SDM primers were designed as 

described in section 2.1.7. 

 

HsPrx3 template DNA was routinely methylated to ensure complete digestion by DpnI 

(Li et al., 1999) and prevent false positives. This was achieved by incubating template 

DNA with the New England Biolabs (NEB) methyltransferase system (table 2.4) for 

one hour at 37°C. Primers from Invitrogen and IDT were rehydrated to 100 ng/µL 

concentration and stored at -20°C. PfuTurbo DNA polymerase was used (Takara). A 

standard PCR reaction was set up with the reagents as shown in table 2.5 and run in the 

thermocycler on the programme shown in table 2.6. The DNA polymerase system 

PrimerSTAR HS with GC buffer from Takara (via Norrie Biotech, Auckland, New 

Zealand) was used for SDM of the MtAhpE gene, as it shows high accuracy and 

amplification rates for high GC templates such as the M. tuberculosis genome (Takara, 

PrimeSTAR HS instruction manual).  

 

Table 2.4: Methylation of template DNA 

Plasmids containing the gene to be mutated were incubated with the following reagents at 37°C 

for one hour. This ensured all parental DNA was degraded, as DpnI recognises methylated 

DNA. 

Reagent Amount used 

10 x NEBuffer
TM

 2 1.6 μL 

NEB DNA methylation enzyme 1 μL 

Template plasmid 125 ng 

10 x S-Adenosyl methionine 1.6 μL 

H2O To a final volume of 10 μL 
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Table 2.5: Standard PCR reaction 

The reaction mixture suggested in the QuikChange
®
 manual was used as a standard protocol to 

be optimised if initial reactions were unsuccessful. 

Reagent Amount used 

2x GC reaction buffer 12.5 μL 

Template plasmid 1 ng 

Forward primer 125 ng 

Reverse primer 125 ng 

dNTP mix  1 μL 

MillQ H2O To a final volume of 50 μL 

Polymerase enzyme 1 μL added last 

 

 

Table 2.6: Standard thermocycler programme 

The following programme was adapted from the QuikChange
®
 manual to suit the gene and 

polymerase being used: initial denaturation time was increased to optimise strand separation of 

a high GC content gene; a short annealing time was used to suit the polymerase (following 

manufacturer’s instructions); template concentration was lowered to suit the polymerase. 

Segment Cycles Temperature Time 

1 – Initial denaturation 1 95ºC 5 minutes 

2 – Denaturation 16 95ºC 10 seconds 

      Annealing  65ºC 5 seconds 

      Extension  72ºC 5 minutes 

3 – Final extension 1 72ºC 2 minutes 

 

 

Once the thermocycler programme was complete the reaction mixture was cooled to 

4°C on ice or in the machine. Presence of an amplified product was checked by running 

the mixture on a 1% agarose gel (2.2.4.4). 1 µL DpnI restriction enzyme was added to 

the mixture, pipetted up and down to distribute the enzyme, and incubated at 37°C for 1 

hour. DpnI exclusively digests methylated DNA (Li et al., 1999) and is therefore used 

to remove the parental (template) plasmid. 1 µL of the digestion mixture was used to 

transform the appropriate cells (see section 2.2.1). 
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Control reactions were carried out in parallel with SDM reactions to ensure efficiency 

of mutagenesis and transformation. The pWhitescript plasmid and control primers 

(provided in the QuikChange
® 

kit) were subjected to identical PCR conditions, and after 

thermocycling and digestion, XL1-Blue cells were transformed and plated onto LB 

plates with Amp, IPTG, and 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-

gal). On this medium mutant transformants form blue colonies, unsuccessful 

mutagenesis results in white colonies, allowing mutagenesis efficiency to be calculated 

(Stratagene, 1998) using equation 2.1. 

Mutagenesis efficiency = (Blue cfu / Total cfu) x 100 Equation 2.1 

Where cfu is the number of colony forming units. According to the manufacturer’s 

guidelines (Stratagene, 1998), transformation of the pWhitescript plasmid can be 

expected to result in 50 – 800 colonies, with a mutagenesis efficiency of over 80%. 

 

2.2.4 DNA manipulations 

 

2.2.4.1 Plasmid preparation by alkaline lysis 

 

Plasmid extractions were performed from propagation strains (section 2.1.3). 

Transfected cells containing the desired plasmid were used to prepare 5 mL cultures 

(section 2.2.1 and 2.2.2) and a plasmid extraction performed, using a commercial 

Qiagen kit (Bio-Strategy, Auckland, New Zealand) through alkaline lysis (Birnboim and 

Doly, 1979) and purification with an affinity column (Qiagen, 2012). Purified plasmids 

were stored at -20°C to be used in PCR reactions or transformation by electroporation 

or chemical transformation (section 2.2.1). 

 

1-4 mL of the culture was collected, centrifuged at 12,000 rpm for 1 minute to pellet the 

bacteria and the supernatant pipetted off. 250 µL of buffer S1 was added to the pellet 
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(buffer compositions are described in section 2.1.9.6) and vortexed to resuspend. 250 

µL of buffer S2 was added and mixed gently so as not to shear the genomic DNA and 

contaminate the plasmid DNA. These buffers provide a suitable, alkaline lysis 

environment, contain EDTA and RNAse to reduce contamination and inhibit nucleases, 

and SDS to destroy cell membranes. 350 µL of buffer S3 was added within 5 minutes 

and mixed by inversion to neutralise the lysate, renature plasmid DNA, and precipitate 

cell debris. Lysate was clarified by centrifuging at 12,000 rpm for 10 minutes. The 

supernatant was applied to a QIAPrep column inside a microfuge tube, the DNA 

allowed to bind, and flow through removed by spinning at 12,000 rpm for 1 minute. The 

column was washed twice with wash buffer by adding 750 µL and spinning at 12,000 

rpm for 1 minute, to elute RNA, protein and other contaminants. The filtrate was 

discarded and the column placed back into the microfuge tube and spun to remove all 

traces of wash buffer and salt. 60-80 µL of TE low salt buffer was applied to the column 

membrane and allowed to absorb at room temperature for 1 minute, after which it was 

centrifuged at 12,000 rpm for 1 minute to collect the eluted plasmid in the microfuge 

tube.  

 

2.2.4.2 DNA purification 

 

Ethanol precipitation was carried out to increase the purity of plasmid preparations and 

concentrate plasmids where necessary. The salt concentration of the solution was 

adjusted by adding 1/10 of the volume of the plasmid solution of 3 M sodium acetate, 

pH 5.2 and mixed well. 2 volumes of cold ethanol were added and the mixture placed 

on ice for 20 minutes before centrifuging at 12,000 rpm for 15 minutes. The supernatant 

was decanted carefully as the pellet was not always visible, and the pellet resuspended 

in 1 mL of 70% ethanol. Pelleting and supernatant removal was repeated and the pellet 

resuspended in 60 µL water. 
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2.2.4.3 Commercially prepared plasmids 

 

Customised sequences were ordered using the SDM services offered by GenScript USA 

Inc., NJ, USA, or Epoch Life Science, TX, USA. Designed gene sequences were 

supplied in the vectors described in 2.1.4. 

 

2.2.4.4 DNA gel electrophoresis 

 

DNA gel electrophoresis was routinely carried out to check the purity of DNA 

preparations, the success of PCR amplification, and the presence of primer dimers. 

Agarose gels were prepared by dissolving 1% agarose [w/v] in TAE buffer (section 

2.1.9.7), pouring into a gel caster, adding 5 µL Sybr®Safe dye and inserting a 10 well 

comb. When the gel had set the cassette was placed into an electrophoresis chamber and 

just covered with TAE buffer. Protein samples were mixed with 1/6 volume of 6x DNA 

loading dye (purchased from Bio-strategy, Auckland, New Zealand) and 10 µL volumes 

were loaded into the wells of the gel. 5 µL of 1 kilobase plus DNA ladder (Invitrogen) 

was loaded into lane 1 as a size marker. 

 

2.2.4.5 Determination of DNA concentration 

 

Concentration of DNA solutions was analysed by ultra-violet (UV) absorption at 260 

nm on a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific Inc.), using the 

automatic function of the machine which uses equation 2.2. 

 Concentration      = (A260 / Ɛ260) * l    Equation 2.2 

Where A260 is absorption at 260 nm in AU, Ɛ260 is the wavelength-dependent extinction 

coefficient at 260 nm (ng/cm/µL), and l is the path length in cm (0.1 cm in the 

NanoDrop 2000). The average extinction coefficient of double stranded DNA is 50 

ng/cm/µL (Thermo Fisher Scientific, 2009). The molarity of polymers such as DNA 
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does not depend on length, therefore the more useful units of mass per volume are 

employed in this case. Purity of the sample was also determined on the NanoDrop by 

looking at the 260/280 ratio, taking 1.8 as the value for pure DNA.   

 

2.2.4.6 DNA sequencing 

 

Fidelity of mutagenesis reactions was confirmed by Sanger sequencing (Sanger and 

Coulson, 1975), carried out through Canterbury Sequencing and Genotyping at the 

University of Canterbury using an Applied Biosystems 3130xl Genetic Analyzer; 

through ABI Sequencing and Genotyping Services at Massey University using an 

Applied Biosystems ABI3730 Genetic Analyser, or through the Auckland Genomics 

facility on the Applied Biosystems 3130xl Genetic Analyser. 

 

2.3 Recombinant protein production 

 

2.3.1 Protein expression 

  

2.3.1.1 Small scale expression trials 

 

Five 5 mL cultures of the desired transformant bacteria were prepared (section 2.2.2). 

These were added to 100 mL flasks of LB with appropriate antibiotics, and incubated at 

37°C with shaking at 160 rpm to an OD600 of ~0.6. Cultures were cooled if required to 

ensure they were induced at the correct temperature, and IPTG added to a final 

concentration of 0.6 mM. Flasks were transferred to incubators with shaking at 160 rpm 

for the appropriate time (see table 2.7). Protein expression levels were assessed by SDS-

PAGE analysis of the cell suspension (section 2.4.3). 
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Table 2.7: Protein expression trials 

A range of temperatures and incubation times were used to optimise protein expression. 100 mL 

cultures were each incubated in the following conditions and protein expression assessed by 

band intensity on SDS-PAGE. 

Induction temperature Time of incubation 

18°C Overnight 

22°C Overnight 

26°C 8 hours 

30°C 6 hours 

37°C 4 hours 

 

 

2.3.1.2 Large scale expression 

 

5 mL cultures were grown as before and used to inoculate 1 L flasks of sterile LB media 

containing the appropriate antibiotics (section 2.1.6). Cultures were grown at 37°C with 

shaking at 160 rpm until an OD600 of ~0.6 was reached (typically 4 hours). IPTG was 

added to a final concentration of 0.6 mM, and the cultures transferred to the temperature 

for optimal expression (as indicated by small scale trials; section 2.3.1.1), for the 

appropriate time with shaking at 160 rpm. Induced cells were harvested by 

centrifugation at 6,000 rpm for 15 minutes at 4°C. 

 

2.3.1.3 Expression using autoinduction 

 

Autoinduction media provides a number of sugars, and works on the basis that growing 

bacteria will preferentially metabolise glucose and glycerol before lactose. Once 

glucose and glycerol have been metabolised, the bacteria switch to metabolising lactose 

which activates the lac operon, and, therefore, expression from the plasmid (Studier, 

2005). This means the point of induction is tightly controlled, and “leaky” expression is 

minimised, which is seen to give higher final cell densities and increased protein 

expression (Grabski et al., 2005). Autoinduction buffers (section 2.1.9.9) and all 
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solutions were made and autoclaved in Schott bottles, to be used once after opening. 

925 mL ZY media (section 2.1.9.9) were combined with 1 mL 1 M MgSO4, 20 mL 50x 

5052 and 50 mL 20x NPS (section 2.1.9.9) in a sterile flask. A 5 mL starter culture was 

grown and added to the media, and cultures incubated at 26°C overnight. 

 

2.3.1.4 Cell lysis for protein extraction 

 

Harvested cells were resuspended in lysis buffer (section 2.1.9.1), pelleted again 

(10,000 rpm, 15 minutes at 4°C) and the supernatant discarded. The pellet was 

resuspended in 50 mL of lysis buffer and kept on ice throughout lysis. The suspension 

was split into two aliquots and two methods of cell lysis were tested for efficiency. 

 

Sonication: Sonication utilises a metal probe which oscillates at ultrasonic frequency, 

causing localised low pressure and membrane disruption through cavitation. Lysis of 

small volumes (< 5 mL) was carried out using a Sonicator 3000 (Misonix) equipped 

with a Microprobe (Misonix), for larger volumes (up to 50 mL) a standard probe was 

used. The cell suspension was prepared in a 50 mL Falcon tube placed in a beaker of ice 

slurry to minimise sample heating, and sonicated at 50% amplitude in 1 second pulses 

with 9 second delays, for a total on time of 5 minutes.  

 

High pressure homogenisation: Homogenisation achieves cell lysis as the sample is 

pumped through a needle valve at high pressure, causing cell disruption through shear 

stresses and decompression as the cells return to atmospheric pressure after the valve. 

Large volumes of cell suspension (> 50 mL) or those that could not tolerate sonication 

were lysed by passing through a Microfluidics M-110P cell disrupter, run at 18,000 Pa, 

4°C. The sample was passed through the system three times to ensure complete lysis. 

Resulting lysates from both conditions were clarified by centrifugation (10,000 rpm, 15 

minutes, at 4°C), the supernatant collected and analysed by SDS-PAGE (section 2.4.3). 

Prior to further purification, lysates were filtered through a Millipore 0.2 µm syringe 

filter (EMD Millipore, MA, USA). 
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2.3.2 Protein purification by chromatography 

 

2.3.2.1 Small scale affinity purification 

 

Batch purification using Talon® affinity resin (Takara via Norrie Biotech, Auckland, 

New Zealand) was used to purify small volumes during lysis buffer screening (section 

3.6.3.2). Talon® resin was chosen as the cobalt charged beads give higher affinity and 

specificity in comparison to nickel resin. Batch purification was also used when proteins 

did not bind well, as the increased incubation time increased binding. 

 

1 mL Talon® resin slurry was prepared by centrifugation at 600 rpm for 2 minutes, and 

the storage buffer removed by decanting the supernatant. Resin was equilibrated by 

resuspending the pelleted resin in buffer, re-pelleting with centrifugation at 600 rpm for 

2 minutes, and removing the supernatant. This was repeated twice, then the resin was 

resuspended in 1 mL lysis buffer. The lysis supernatant (section 2.3.1.1) was added to 

the resin, and incubated overnight at 4ºC on a rocker. The resin and bound protein was 

collected by centrifugation at 600 rpm for 2 minutes, and the supernatant removed. The 

resin was washed twice with lysis buffer as before to remove non-specifically bound 

protein. Protein remaining bound to the resin was eluted with an appropriate buffer 

(typically, lysis buffer with 500 mM imidazole added). The supernatant from each step 

for analysis by SDS-PAGE. 

 

2.3.2.2 Immobilised Metal Affinity Chromatography (IMAC) purification 

 

His-tagged proteins were purified from the cell lysate using IMAC using a 5 mL 

HiTrap
TM

 chelating column. The column was stripped and recharged by washing with 

the following: 
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3 column volumes (cv) stripping buffer (section 2.1.9.2) 

 5 cv Milli-Q H2O 

 5 mL 0.1 M NiCl2 

 5 cv Milli-Q H2O 

Prior to sample loading the column was equilibrated with three cv IMAC loading buffer. 

All solutions to be loaded on the column were filtered through a 0.2 µm sterile syringe 

filter (EMD Millipore, MA, USA). The lysis supernatant (section 2.3.1.2) was loaded 

onto the column and the column attached to the ÄKTAprime fast protein liquid 

chromatography system (FPLC). Three cv of lysis buffer (section 2.1.9.2) were passed 

through to remove unbound proteins, and bound proteins eluted with 10 mM – 500 mM 

or 1 M imidazole using the gradient function of the machine and the IMAC elution 

buffer. 1 mL fractions were collected and those that contained high concentrations of 

eluted protein as assessed by SDS-PAGE analysis of fractions (section 2.4.3) were 

pooled and concentrated to about 2 mL (section 2.3.4) with an appropriate molecular 

mass cut off (one third the mass of the protein being purified). This solution was then 

subjected to further purification and preparative steps as required. 

 

2.3.2.3 Gel filtration chromatography 

 

Gel filtration was used to increase sample purity and to swap buffers as required. 

Chromatography was carried out on the Superdex 200 16/60 column which was washed 

with three cv of Milli-Q water then equilibrated with two cv of buffer at a rate of 0.5 

mL/min prior to use. Proteins were eluted with the desired buffer run at 0.5 mL/min, 1 

mL fractions collected and peaks identified by UV absorbance at 280 nm. Peak fractions 

were collected and analysed with SDS-PAGE (section 2.4.3). 
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2.3.3 His-tag removal 

 

2.3.3.1 Tobacco etch virus protease expression and purification 

 

Recombinant tobacco etch virus protease (rTEV) was expressed in E. coli  from the 

pMHT238Δ construct obtained from in house stocks at Auckland University (section 

2.1.4). The enzyme was produced using a protocol based on the methods developed by 

Blommel and Fox (2007). The pMHT238Δ construct developed by this group includes 

mutations to enhance solubility (T17S, I77V and N68D), and minimise autocatalytic 

inactivation (S219V). It produces rTEV with a non-cleavable N-terminal his-tag, and 

self-cleaving maltose binding protein domain (MBP). This allows the protease to be 

removed from samples by IMAC (section 2.3.2.2). 

 

The pMHT238Δ plasmid was transformed into electrocompetent BL21(DE3) Codon 

Plus expression hosts (section 2.1.3 and 2.2.1.4), streaked onto an LB + Kan plate and 

incubated at 37°C overnight. A single colony was picked and used to inoculate 10 mL 

LB + Kan culture, which was grown overnight at 37°C with shaking at 160 rpm. The 10 

mL culture was used to inoculate 1 L LB + Kan, which was incubated at 37°C until the 

OD reached ~0.8 when expression was induced by adding IPTG to a final concentration 

of 0.5 mM. The culture was incubated at 27°C overnight with shaking at 160 rpm. Cells 

were harvested by centrifugation (6,000 rpm, 15 minutes at 4°C) and resuspended in 

rTEV lysis buffer (section 2.1.9.8). Cells were lysed using the cell press (section 

2.3.1.2), and the cell debris separated by centrifugation at 10,000 rpm for 15 minutes at 

4 °C. The supernatant was loaded onto a 5 mL HiTrap
TM 

column attached to the 

ÄKTAprime FPLC system (section 2.3.2.2), washed with three column volumes of 

rTEV lysis buffer, and eluted with rTEV elution buffer (section 2.1.9.8) using the 

gradient function of the machine. Fractions containing rTEV as judged by SDS-PAGE 

(section 2.4.3) were then desalted using a GE HiPrep™ 26/10 desalting column and 

exchanged into rTEV storage buffer (section 2.1.9.8). The solution was incubated at 

4°C for one hour to allow MBP-tag cleavage, then loaded onto a GE HiTrap
TM 

Q 
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Sepharose anion exchange column attached to the ÄKTAprime FPLC system. Protein 

was eluted with rTEV high salt buffer (section 2.1.9.8) using the gradient function of 

the machine, collecting 1 mL fractions. Fractions containing rTEV were pooled and 

diluted with rTEV storage buffer to a final protein concentration of 2 mg/mL as judged 

by nanodrop analysis (section 2.4.2). 500 µL aliquot were snap frozen and stored at -

80°C. 

 

2.3.3.2 rTEV cleavage 

 

MtAhpE was expressed in a pProEx vector, which encodes an N-terminal 6xHis tag, 

followed by a 15 residue linker peptide which includes the sequence ENLYFQG – the 

most commonly used recognition sequence for rTEV, which cleaves between Q and G 

(Dougherty et al., 1989; Carrington and Dougherty, 1989). HsPrx3 was expressed in a 

pET151 vector, which encodes a 6xHis tag, followed by a 26 residue linker peptide, 

including the ENLYFQG cleavage site. Cleavage trials were run to optimise ratios, 

temperature, and duration of cleavage. The conditions tested are detailed in table 2.8. 

 

Table 2.8: rTEV cleavage trials 

A range of temperatures and protease concentrations were trialled to achieve optimal tag removal 

while avoiding non-specific cleavage. Cleavage was generally seen to be efficient even at the 

lowest concentration of rTEV. Incubation times and temperatures were selected based on results 

of trials with individual proteins. 

Ratio rTEV:Protein Incubation 

temperature 

Incubation time 

1:20 

1:50 

1:100 

4°C 

4°C 

4°C 

Overnight 

Overnight 

Overnight 

1:20 

1:50 

1:100 

21°C 

21°C 

21°C 

6 hours 

6 hours 

6 hours 

1:20 

1:50 

1:100 

37°C 

37°C 

37°C 

1 hour 

1 hour 

1 hour 
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2.3.4 Protein concentration 

 

Protein samples were concentrated to required volumes, using centrifugal concentrators 

or polyethylene glycol (PEG) dialysis.  

 

Centrifugal concentration: Vivaspin centrifugal concentrators were selected to have a 

molecular weight cut off (MWCO) of one third the molecular of the protein to be 

concentrated. Samples were centrifuged at 4,000 rpm at 4°C until the desired volume 

was reached. Amicon Ultra-0.5 mL centrifugal concentrators (Millipore) were used for 

small volumes. 

 

Dialysis concentration: Where centrifugal concentration was not able to be used (for 

example, when proteins were found to adhere to the concentrator membrane), 

concentration was achieved using dialysis. 10,000 MWCO dialysis tubing was prepared 

by wetting with Milli-Q water, then boiling twice for ten minutes in a solution of 10 

mM sodium bicarbonate, 10 mM EDTA, pH 8.0, 20% [v/v] ethanol. Tubing was then 

washed and stored in 0.1% [w/v] sodium azide if not used immediately. Protein samples 

were transferred into the prepared tubing and dialysed against a solution of buffer 

substituted with 50% [w/v] PEG8000. Samples were exchanged into a PEG-free buffer 

(section 2.3.5). Repeated buffer exchange was carried out to ensure complete removal 

of PEG8000. 

 

2.3.5 Buffer exchange 

 

Buffer exchange was carried out to remove glycerol from buffers used for storage, or 

where purification buffers were not appropriate for further experiments. 
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Buffer exchange by dialysis: 10,000 MWCO dialysis tubing was prepared as described 

previously (section 2.3.4). Protein samples were transferred into dialysis tubing, and 

dialysed against the required buffer. Sample to dialysis solution ratios would typically 

be 1:2,000. Dialysis was carried out at 4°C with stirring to increase the rate of 

exchange. Typically, this would be repeated to achieve complete exchange. 

 

Buffer exchange by chromatography: 5 mL HiTrap
TM 

Desalting columns (GE 

Healthcare) were purchased pre-packed with Sephadex G-25 Superfine cross-linked 

dextran. These employ the same principles as gel filtration (see appendix 1) to separate 

molecules with a mass larger than 5 kDa from those with a mass below 1 kDa, thereby 

separating proteins from buffer salts. The column was connected to the Ӓktapurifier 10 

FPLC system, and equilibrated with 3 column volumes of the required buffer at 2 

mL/min. The sample was loaded onto the column at a maximum volume of 1 mL. 

Protein was eluted at 2 mL/min using the required buffer, 0.5 mL fractions collected and 

the elution of protein monitored by UV absorbance at 280 nm. 

 

2.4 Protein characterisation 

 

2.4.1 Peptide sequencing 

 

The presence of a protein in purified solutions or chromatography fractions was 

indicated by the appearance of a band of appropriate size on SDS-PAGE (2.4.3). When 

a band of the appropriate size was present but the identity of this band was still in 

question, peptide sequencing was used to confirm the band was the protein of interest.  

 

The protein was extracted from the band on SDS-PAGE using a method adapted from 

Jin and Manabe, (2005). The band was excised with a razor and washed in distilled 

water before soaking in destain solution (100 µL ammonium bicarbonate, 50% 
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acetonitrile). When the gel was completely destained, the slice was washed again with 

distilled water, transferred to a clean 1.5 mL Eppendorf tube and 20 µL of 0.1 M NaOH 

pH 13 added. The gel was crushed and incubated in the NaOH solution for 10 minutes 

at room temperature. 30 µL TFA was added and the resulting solution desalted using a 

ZipTipC18 pipette desalting tip (Millipore) which had previously been equilibrated with 

0.1% TFA. The protein was eluted from the ZipTip using 2 µL of 70% (v/v) acetonitrile 

and 0.1% TFA and the solution analysed using liquid chromatography tandem mass 

spectrometry (LC-MS/MS) by Martin Middleditch at the centre for Genomics and 

Proteomics, University of Auckland; or by Stefan Clerens at AgResearch, Lincoln. 

 

2.4.2 Determination of protein concentration 

 

2.4.2.1 Bradford assay 

 

The Bradford assay (Bradford, 1976) relies on the colour of Coomassie Brilliant Blue 

G-250 changing from brown to blue. Under acidic conditions the dye is brown, but 

binding to protein stabilises the anionic form of the molecule, which is blue and shows 

an absorbance maximum at λ = 595 nm. Assays were performed in 96-well plates in 

triplicate, as per the instructions of the BioRad kit. Asssay reagent was diluted 1:4 in 

Milli-Q H2O, and filtered through at 0.2 µm syringe filter (EMD Millipore, MA, USA). 

A bovine serum albumin (BSA) standard was prepared in Milli-Q water. 10 µL protein 

solution or standard were pipetted into the wells, to which 200 µL Bio-Rad protein 

assay was reagent added and the solutions mixed thoroughly by pipetting. The mixture 

was incubated for five minutes at room temperature before the absorbance at 595 nm 

was measured using the Molecular Devices Spectramax M5 equipped with Softmax Pro 

5.4.1 software (Biostrategy, Auckland, New Zealand). A standard curve was generated 

by plotting the absorbance of BSA at four or more concentrations in the linear range 

(0.2 – 0.9 mg/mL). 
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2.4.2.2 NanoDrop spectrophotometric analysis 

 

Purified protein solutions were analysed by UV absorption at 280 nm on the NanoDrop 

2000. Extinction coefficients of protein samples were calculated from amino acid 

sequence using the ExPasy online bioinformatics server (Gasteiger et al., 2005), and 

were used to determine concentration using the calculation in equation 2.3. 

 Concentration      = (A280 / Ɛ280) * l    Equation 2.3 

Where A280 is the absorption at 280 nm in AU, Ɛ280 is the extinction coefficient at 280 

nm (M
-1

 cm
-1

), and l is the path length in cm (0.1 in the case of the NanoDrop 2000). 

Protein samples were concentrated to required volumes (section 2.3.4). Comparison of 

NanoDrop analysis to Bradford analysis showed good agreement, therefore, NanoDrop 

analysis was routinely used to ascertain protein concentration. 

 

2.4.3 SDS-PAGE analysis 

 

Protein samples were run on sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) in reducing, denaturing conditions to estimate monomer size (Shapiro et 

al., 1967) by comparison to the migration pattern of protein standards which were 

always run on the same gel as the sample to be analysed. The purity of the sample could 

also be determined by the presence or absence of bands on the gel additional to the 

major band indicating the protein of interest. Denaturation was carried out by the 

addition of 5 μL of sample loading buffer (see 2.1.9.4) to 5 μL protein solution and the 

mixture heat shocked at 96°C for three minutes to activate the SDS. The gel cassette 

was assembled into the gel dock and 10 μL of the denaturation mixture loaded into the 

wells. Home-made 12% acrylamide gels (section 2.1.8) were run using running buffer 

(section 2.1.9.4) for 1 hour at 120 V. 4-12% Bis-Tris gels were loaded into the gel 

cassette and run in MES buffer (Good et al., 1966; section 2.1.9.4) in an electrophoresis 
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gel cassette at 200 V for 35 minutes. After electrophoresis, gels were removed, washed 

three times for five minutes in Milli-Q H2O, then stained for thirty minutes in 

Coomassie stain (section 2.1.9.4). Destaining was carried out by soaking for one hour in 

destain (section 2.1.9.4), and the results examined on a gel dock.  

 

Where cross-linking was required prior to SDS-PAGE analysis, proteins were incubated 

with 2.3% glutaraldehyde for the time required for the individual experiment as detailed 

in the results. 

 

2.4.4 Mass Spectrometry 

 

Matrix assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-

TOF MS) was used to obtain accurate molecular masses of native and mutant proteins, 

to confirm the purity and identity of the protein, and rule out any degradation of the 

sample (Mann et al., 2001). 1 μL of matrix solution (see 2.1.9.5) was applied to discrete 

spots on a 100-well sample plate (Applied Biosystems Incorporated) and allowed to air 

dry. Dilutions of 1:20 and 1:50 protein:matrix were made up and 1 μL overlayed onto 

the matrix spots. Once dried MALDI-TOF spectra were obtained using the Voyager DE 

PRO Biospectrometry workstation equipped with Voyager 5 and Data Explorer 

software (Applied Biosystems Incorporated) at Auckland University. Spectra were 

obtained using the following conditions: 

 

Manual control  

Accelerating voltage: 25,000 V 

Guide wire voltage: 0.3% 

Delay time: 200-300 ns 

Grid voltage: 94% 

Low mass gate: 3000 Da 
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2.5 Biophysical techniques 

 

A number of biophysical techniques were used to characterise the proteins studied in 

this research, and assess the influence of introduced mutations. The theory and 

applications of the techniques can be found in appendix 1. 

 

2.5.1 Circular dichroism 

 

Circular dichroism (CD) data sets were collected on a Jasco J-815 circular dichroism 

spectrophotometer. Protein solutions of 0.1 – 0.5 mg/mL were prepared in CD buffer 

(section 2.1.7.3) or water. A quartz cuvette with a 1 mm path length was used, and the 

instrument initialised with Milli-Q H2O and blanked with CD buffer. Data were 

analysed using the Spectra Analysis v1.5 program (Jasco) to subtract blank traces and 

the DichroWeb online server (Whitmore and Wallace, 2004) was used to estimate 

secondary structure using the CDSSTR program (Compton and Johnson, 1986). The 

program uses a reference set of CD spectra, which was chosen to be representative of 

the protein being analysed (Sreerama, 2000). 

 

2.5.2 Analytical size-exclusion chromatography (SEC) 

  

2.5.2.1 Data collection 

 

An S200 10/300 analytical column (GE Healthcare) was connected to an Ӓktapurifier 

FPLC system (GE Healthcare). This column was packed with Superdex beads, 

composed of dextran covalently linked to cross-linked agarose. The total volume of the 

column was 24 mL and the void volume 7.2 mL, as judged by the elution of blue 

dextran (Andrews, 1965).  
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Prior to sample injection the SEC column and FPLC were equilibrated with three 

column volumes of the appropriate buffer (section 2.1.9.2), run at 0.5 mL/min. Bio-Rad 

gel filtration standard mix was used for calibration, and contains a mixture of 

lyophilised proteins from 1,350 to 670,000 Da. This was rehydrated in the buffer to be 

used for analysis, in the quantity recommended by the manufacturer which gave final 

compositions as detailed in table 2.9. 100 µL of the mixture was injected onto the 

column, and eluted at a flow rate of 0.5 mL/min (figure 2.1) with constant monitoring of 

the refractive index (RI) and UV absorbance at 280 nm. Standards were run twice and 

the elution volumes used to derive a calibration curve (section 2.5.2.2). Samples to be 

analysed were injected onto the column, at a volume of 100 µL and concentration of 1 

mg/mL unless otherwise stated. Protein was eluted using the appropriate buffer at a flow 

rate of 0.3 mL/min, and 0.5 mL fractions collected. 

 

Table 2.9: Protein standard concentrations 

Lyophilised protein standard mixture (Bio-Rad) was rehydrated with running buffer to give final 

protein concentrations as shown. 

Component 

Molecular Weight 

(Da) 

Working concentration (mg/mL) 

Thyroglobulin 670, 000 5 

γ-globulin 158, 000 5 

Ovalbumin 44, 000 5 

Myoglobin 17,000 2.5 

Vitamin B12 1,350 0.5 
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Figure 2.1: Typical elution profile of protein standards  

The five protein species in the mixture eluted at different volumes, indicated by peaks in the UV 

absorbance trace. Standards were run twice. 

 

2.5.2.2 Data analysis 

 

The partition coefficient (Kav) was calculated for each of the protein standards (using 

equation 2.4) and plotted against the Log10Mw for each (figure 2.2). 

 

 
Figure 2.2: A typical size-exclusion chromatography calibration curve  

The calculated Kav values were used to plot a calibration curve, from which the molecular 

weight of unknown samples could be calculated. 
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Kav of sample proteins were calculated from the experimental elution profiles using 

equation 2.4. The Log10Mw was then acquired from interpolation from the calibration 

curve (figure 2.2), and the molecular weight calculated using equation 2.5, derived from 

the slope of the calibration curve.  

 Kav = (Ve – V0) / (Vt – V0)     Equation 2.4 

Where Ve is the elution volume of the protein, Vt is the total column volume and V0 is 

the void volume (24 and 7.3 mL respectively in the case of the S200 10/300 column). 

Mw = 10 
((-4.1134 x Kav) + 3.6838)

     Equation 2.5 

 

 

2.5.3 Size-exclusion chromatography with in-line light scattering 

(SEC/SLS) 

 

A Superdex 200 10/300 column (GE Healthcare) connected to a Viscotek 302-040 

Triple Detector GPC/SEC system (ATA Scientific) operated at 28°C was equilibrated 

with gel filtration buffer (2.1.9.2) by passing through the column at 0.5 mL /min for a 

minimum of three column volumes. 130 µL samples were injected onto the column and 

eluted at a flow rate of 0.5 mL/min. Absolute molecular weight, radius of hydration and 

size distributions were calculated using the refractive index (RI), intrinsic viscosity, and 

right-angle light scattering (RALS) measurements calibrated against bovine serum 

albumin (BSA) (66.5 kDa, Sigma), which was run at the beginning and end of each 

sample sequence. Calibration was carried out using the OmniSEC software as per the 

manufacturer’s instructions (appendix 1).   
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2.5.4 Electron microscopy  

 

2.5.4.1 Recording of images 

 

Copper grids overlayed with a thin layer of carbon were rendered hydrophilic by glow 

discharge just prior to use (Aebi and Pollard, 1987). Protein samples were prepared at 

0.02 – 0.1 mg/mL, and 5 μL pipetted onto the grid. Protein was allowed to adsorb for 60 

seconds then blotted dry using filter paper (Whatman #1). 5 μL of stain was 

immediately added to the grid, and left to stain for 60 seconds before excess stain was 

removed with filter paper. NanoVan solution (Nanoprobes
TM

) or uranyl acetate were 

used to negatively stain particles. NanoVan was obtained as a 2% solution in water at 

pH 8.0; uranyl acetate was made up as a 1% solution, and filtered prior to use through a 

0.2 μm syringe filter (EMD Millipore, MA, USA). Both were stored in the dark at 4ºC 

to be used within 1 year. 

 

Low dose TEM was performed using an FEI Tecnai 12 electron microscope equipped 

with an LaB6 filament operated at 120 kV. Images were recorded on Kodak ISO-163 

film using ~ 2 μm underfocus at a nominal magnification of 52,000 x and developed for 

10 minutes in D19 (Kodak) diluted 1:1 with deionised water. Digital electron 

micrographs were also recorded using a CCD camera but these were not used for image 

processing. 

 

2.4.5.2 Processing of images and generation of 3D models 

 

Electron micrographs were digitised using a Nikon Super Coolscan 9000 scanner at a 

raster step of 7.8 µm corresponding to a spacing of 1.5 Å on the specimen. Isolated 

particles were automatically selected using the boxer module of the EMAN v1.9 image 

processing suite (Ludtke et al., 1999) and a window size of 200 x 200 pixels. To reduce 

high-and low-frequency noise components, a 20 Å to 200 Å band-pass filter was applied 
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to the raw images, which were subsequently normalised. Automatically picked particles 

were inspected manually and false positives removed. Typically, 100 reference-free 

class averages were generated in 9 rounds of iterative refinement by using the 

refine2d.py routine in EMAN v1.9.  

 

To initiate 3D reconstructions from conformationally homogeneous subsets of raw 

images, initial reference models were built using the startcsym routine of EMAN v1.9. 

Typically, 5 initial models were simultaneously refined by 9 iterative rounds of multi-

model refinement of EMAN v1.9 with D6 symmetry imposed. The resulting models 

were separately refined with imposed D6 symmetry using only the selected set of raw 

images that the process of multi-model refinement had associated with a given reference 

model. Resolution of the reconstruction was determined by Fourier-shell correlation of 

two reconstructions obtained from evenly split datasets using the FSC0.5 criterion. 

 

2.5.5 Small angle X-ray scattering  

 

2.5.5.1 Data Collection 

 

Small angle X-ray scattering (SAXS) measurements were carried out at the Australian 

Synchrotron on the SAXS/WAXS beamline. The X-ray energy was 12 kV, 

corresponding to a wavelength λ of 1.0332 Å, and a Dectris-Pilatus detector used to 

record scattering patterns (1 M, 170 mm x 170 mm, effective pixel size, 172 x 172 µm). 

The sample to detector distance was 1600 mm to provide a ‘q’ (Fourier spacing) range 

of 0.0126-0.500 Å
-1

. Highly pure protein samples in gel filtration buffer were 

centrifuged and filtered using 0.2 µm Amicon Ultrafree-MC centrifugal filter units 

(Millipore, Billerica, MA, USA) to remove any aggregates prior to data collection. 50 

µL samples were automatically loaded from a multi-well plate into a 1.5 mm glass 

capillary at 10°C, using dialysis buffer as a blank. Samples were run at concentrations 

of 0.5 – 2 mg/mL, and data collected at 2 second intervals under continuous flow to 
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minimise possible damage to the sample from radiation. Where necessary, samples were 

also run through a gel filtration column prior to SAXS data collection – a Superdex 

S200 5/125 column (GE Healthcare) was attached to a BioLogic DuoFlow FPLC, and 

samples passed through the column then routed into the capillary mounted on the 

beamline. This allowed scattering data collection concurrent with chromatography 

analysis and removed aggregates which formed rapidly in relation to experiment time. 

In the case of samples run through the FPLC, frames from the first part of the 

chromatography run prior to protein elution were used as the blank measurement. 

Samples run through FPLC were injected at around 10 mg/mL to allow for dilution on 

the column, estimated to be tenfold.  

 

2.5.5.2 Data analysis 

 

2D scattering plots were averaged and background scattering subtracted using 

Scatterbrain software (Petoukhov et al., 2007), and the AUTOPOROD function of the 

program used to calculate maximum particle size (Dmax), Porod volume, and molecular 

mass. Data sets were recorded in the form of 30 images, and PRIMUS software 

(Konarev et al., 2003) used for scattering pattern analyses and to generate Guinier plots. 

PRIMUS was also used to generate Kratky plots to ensure that proteins that were being 

analysed were correctly folded, and radius of gyration (RG) was calculated from the 

slope of Guinier plots. GNOM (Svergun, 1992) was used to perform indirect Fourier 

transforms and generate pairwise distance distribution function P(r) to indicate the 

relative probabilities of distances between scattering centres and Dmax. RG was also 

calculated from GNOM and compared to that calculated from the Guinier region, to 

assess the quality of the data. Theoretical scattering patterns and Dmax values were 

generated from atomic coordinates of known structures, and compared with 

experimental scattering using CRYSOL (Svergun et al., 1995). 
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2.5.6 Protein crystallisation 

 

2.5.6.1 Crystal trials 

 

Crystallisation trials were routinely carried out at the University of Auckland using the 

Hamilton Robotics Cartesian Honeybee Nanodispensor, operated by Dr Ivan Ivanovich. 

Highly pure samples were concentrated (section 2.3.5) to around 10 mg/mL. Initial 

screens utilised the sitting drop vapour diffusion method, and were set up using six in 

house screens (appendix 2). Screens were designed to vary parameters typically used to 

influence crystallisation including precipitant type, pH and buffer additives (Kingston et 

al., 1994). For each condition 70 µL of solution from the crystallisation screen was 

dispensed into the reservoir of a 96-well Intelliplate (Art Robbins Instruments). 400 nL 

of protein sample was dispensed onto the sample well and 400 nL of reservoir solution 

mixed with the protein in the well. Plates were sealed with ClearSeal Film (Hampton 

Research), incubated at 18°C for at least 4 weeks, and examined under a light 

microscope at regular intervals to monitor crystal growth.  

 

2.5.6.2 Fine-screening 

 

Conditions that produced microcrystals or non-amorphous aggregation were optimised 

to increase crystal size and quality. Depending on the conditions and type of crystals 

seen, pH, salt, precipitant and protein concentration were used as variables across a 24-

well plate. Fine screens were set up using the hanging drop vapour diffusion method in 

24-well VDX crystallisation plates (Hampton Research) 750 µL reservoir solution 

pipetted into the wells and 1 μL of protein sample pipetted onto the centre of a 

siliconised coverslip. 1 μL of reservoir solution was added into the protein sample and 

the coverslip inverted over the reservoir and sealed. Plates were incubated at 18°C for 4 

weeks and examined under a light microscope at regular intervals.  
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2.5.6.3 Freezing of viable crystals 

 

Crystals of an acceptable size and quality were tested for X-ray diffraction patterns 

using the in house X-ray source (Mardtb Desktop Beamline) or the MX beamlines at the 

Australian Synchrotron. Crystals were transferred to a cryoprotectant (typically 70% 

[v/v] Paratone-N [Hampton Research], 30% [v/v] paraffin oil) using a thin fibre loop 

(Hampton Research) to prevent ice formation and associated mechanical damage during 

flash freezing (Kriminski et al., 2002). The loop was plunged into liquid nitrogen, and 

stored in these conditions. 

 

 

2.6 Peroxidase activity assay 

 

2.6.1 Data collection 

 

The assay used to monitor Prx activity is adapted from the work of Ogusucu et al. 

(2007). 5 mg HRP was dissolved in assay buffer to give solution ~80 µM. The precise 

concentration was checked by measuring the absorbance at 403 nm using a glass cuvette 

with a path length of 1 cm (ε403 =1.02 x 10
6 

M
-1

 cm
-1

; Dolman, 1975). All 

spectrophotometric measurements were carried out in the Molecular Devices 

Spectramax M5 equipped with Softmax Pro 5.4.1 software (Biostrategy, Auckland, 

New Zealand). Serial dilutions of stock H2O2 were made in phosphate assay buffer 

(section 2.1.9.10) to give 1 mL each of 1:10, 1:100, 1:1,000 and 1:10,000 dilutions. The 

concentration of the stock solution was calculated by measuring the absorbance at 240 

nm in a quartz cuvette with a path length of 1 cm (ε240 = 43.6 M
-1

 cm
-1

; Hildebraunt 

and Roots, 1975).  
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The Prx to be analysed was concentrated to ~ 30 mg/mL, in a volume of at least 50 µL 

(section 2.3.5), and reduced by incubating on ice with 2 mM BME for at least one hour. 

Buffer exchange was carried out to remove all traces of reductant using Micro Bio-

Spin® P-6 gel columns (Bio-Rad). Columns were inverted several times to resuspend 

the gel, the tips and caps removed, and storage buffer allowed to drain by gravity flow 

for two minutes. The columns were placed into a 2 mL Eppendorf tube and centrifuged 

at 1,000 x g for two minutes to remove residual buffer. Equilibration was carried out by 

resuspending the beads in 500 µL assay buffer, and centrifuging at 1,000 x g for one 

minute. This was repeated four times for >99.9% buffer exchange. 50 - 65 µL of the 

reduced Prx sample was applied to the centre of the column and incubated at 4°C for 

two minutes to ensure all low molecular weight particles enter the beads (Peskin, 

personal communication). Columns were centrifuged at 1,000 x g for two minutes and 

the flow through collected. Final Prx concentration was checked using the NanoDrop 

2000 (2.4.2.2). 

 

Reactions were set up in triplicate in a Greinier 96-well clear bottom plate (Sigma-

Aldrich, Auckland, New Zealand). Prx samples were diluted to ~2 mg/mL (~100 µM) 

with assay buffer, and each sample was analysed at concentrations of, 1, 2, 3, 4, 6, 8, 

and 10 µM. Prx was dispensed using a multichannel manual pipette (Eppendorf),  and 

HRP added with a Repetman® automated dispenser (Gilson Inc., WI, USA). Assay 

buffer was added as required (table 2.10) and the mixture incubated for ten minutes. 

Reaction mix compositions are given in table 2.10. 

 

H2O2 was added to the wells using the multichannel pipette, and the reactions mixed by 

pipetting up and down three times. The plate was immediately transferred to the 

spectrophotometer and the absorbance at 403 nm recorded for ten minutes at intervals of 

eight seconds. The absorbance of two control reactions were always measured 

concurrently – 8 µM HRP alone, and 8 µM HRP with 3 µM H2O2 with no Prx. As the 

reduced protein was exchanged into a buffer containing no reductant, the protein could 

not be recycled and therefore only the first cycle of catalysis was measured.  
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Table 2.10: Composition of well solutions for activity assay 

Required volumes of reagents were calculated depending on stock concentrations (section 

2.1.9.10). An example is shown, as calculated for reagents at the following starting 

concentrations: Prx 100 µM, HRP 80 µM, H2O2 160 µM. H2O2 was not added until immediately 

prior to spectrophotometric measurement. 

Prx 

Conc (µM) Vol (µL) 

HRP 

Conc (µM) Vol (µL) 

H2O2 

Conc (µM) Vol (µL) 

Assay 

Buffer 

Vol (µL) 

1 2.5 8 25 3 4.69 217.81 

2 5 8 25 3 4.69 215.31 

3 7.5 8 25 3 4.69 212.81 

4 10 8 25 3 4.69 210.31 

6 15 8 25 3 4.69 205.31 

8 20 8 25 3 4.69 200.31 

10 25 8 25 3 4.69 195.31 

 

 

2.6.2 Data analysis 

 

Relative activity was calculated by determining the relative amounts of the substrate 

that are catalysed by HRP and HsPrx3. This was achieved by monitoring the change in 

absorbance at 403 nm, which indicated the degree to which HRP was out competed by 

HsPrx3. The rate was calculated using the absorbance at the time point of 120 seconds, 

at which point the reaction had finished and absorbance had stabilised. kHsPrx3 was 

calculated using equation 2.6. 

  (
 

   
)     [   ]         [HsPrx3]  Equation 2.6 

Where (F/1-F) is the ratio of inhibition of HRP. This is derived from the change in 

absorbance at 403 nm (ΔA403) compared to that of the HRP reaction with H2O2 without 

a competing peroxidase (figure 2.3; equations 2.7 and 2.8; Winterbourn, 1987). The 

baseline is given by the recorded absorbance of HRP with no peroxide or HsPrx3 (i.e. 

no change in A403). 
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Figure 2.3: Calculation of HRP inhibition 

The figure shows a representation of the change in absorbance at 403 nm when HRP and Prx 

react with H2O2. The hyperbolic part of the reaction occurs over a very small timescale, and 

measurements at the arbitrary time point of 120 s were used for calculations. At this point the 

change in absorbance had stabilised.  

 F = x/z       Equation 2.7 

 1-F = y/z      Equation 2.8 

The value of (
 

   
)     [   ] was calculated for each concentration of HsPrx3 and 

plotted against the concentration. The slope of the graph yielded the relative activity of 

HsPrx3 (kHsPrx3) with the units M
-1

s
-1

. 
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Chapter 3 Mycobacterium tuberculosis AhpE 

 

3.1 Introduction  

 

The quaternary structure of the 1-Cys Prx MtAhpE (section 1.4.2.1) has been described 

in solution studies (Hugo et al, 2009; Li et al., 2005), and the crystal structure (Li et al., 

2005). However, the octameric arrangement in the crystal has been suggested to be an 

artefact (Jönsson and Lowther in Flohé and Harris, 2007), and the molecular weight in 

solution had been misinterpreted (Dr S. Lott, University of Auckland, personal 

communication). A change in oligomeric state in response to redox conditions has been 

reported (Hugo et al., 2009), but the stoichiometry of the complex had not been 

confirmed in solution. All studies to date have been carried out on his-tagged constructs 

of MtAhpE, which has been seen to affect the quaternary structure of Prxs (Cao et al., 

2011; section 4.3.1.3). The first part of this research focused on elucidating and 

characterising the oligomer in solution (section 3.4.1). The redox sensitivity was studied 

to allow comparison with typical 2-Cys Prxs, in order to gain insight into the important 

features that contribute to the “redox switch” mechanism. 

 

The N-terminal tail has been suggested to be important in MtAhpE oligomerisation (Li 

et al., 2005), therefore modifications to this region of the protein were explored to gain 

insight into its role in self-assembly (section 3.5). Further modifications to the native 

protein were studied to increase understanding of the unusually stable A-type interface 

(section 3.6). Four mutations were introduced to this interface to identify key residues. 

 

As the dimer interface of MtAhpE is equivalent to the oligomer-building interface of 

typical 2-Cys Prxs, a comparative study of the two interfaces was of interest. This also 

suggested equivalent mutations to the A-type interface of hPrx3 in order to stabilise the 

toroid (chapter four).  
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3.2 Design and generation of MtAhpE interface mutations 

 

The dimer interface of MtAhpE is a unique, highly stable example of the conserved Prx 

A-type interface (section 1.3.2.2). Comparison with the A-type interface of the typical 

2-Cys Prx BtPrx3 indicates that the interface architecture is conserved in MtAhpE, with 

no gross morphological differences (figure 3.1). The major difference is an additional 

small helix at the top of the BtPrx3 interface. The increased stability must therefore be 

conferred through subtle sequential differences at the interface. The contribution of 

particular residues and possibility to disrupt the dimer interface was investigated by 

mutating predicted interacting residues to alanine. 

 

Figure 3.1: The A-type interfaces from MtAhpE and a typical Prx overlay well 

The A-type interface of MtAhpE (magenta) and a typical 2-Cys Prx (BtPrx3) are structurally 

very similar. The lack of gross morphological differences suggests specific interactions 

contribute to the stability of the MtAhpE A-type interface.  

 

3.2.1 Dimer interface analysis 

 

The residues involved in the dimer interface were determined through analysis of the 

interface carried out using the PDBePISA online bioinformatics tool (Krissinel and 

Henrick, 2007), which predicts interactions by identifying the residues that become 

buried when two subunits come together and analysing the proximity and bonding 

125



P a g e  | 104 

 

 

potential of these residues. 21 residues were identified as interfacing residues, 

comprised of 17 hydrophobic and four hydrophilic residues, of which 12 are more than 

50 % buried by monomer association. Four H-bonds were suggested: between 

glutamine 83 (Q83) and its counterpart on the other apposing monomer; threonine 76 

(T76) and its counterpart; and between tryptophan 95 (W95) of chain A and glutamic 

acid 109 (E109) of chain B (figure 3.2A). The interface is symmetric, with the fourth H-

bond occurring between W95 of chain B and E109 of chain A. Pymol analysis (DeLano, 

2002) of this dimer interface suggested that three of the predicted bonds were direct 

bonds, with the H-bond between T76 of each subunit being water-mediated (figure 

3.2B; see also section 1.3.2.2). 

 

The buried surface in the dimer interface is 730.8 Å
2
, which makes a slightly larger 

interface with more interactions than that of a typical A-type interface – for example, 

BtPrx3, whose A-type interface buries 673.4 Å
2
 and contains three H-bonds. Previous 

studies attempting to disrupt the A-type interface of typical Prxs with single residue 

mutations have been successful (Parsonage et al., 2005; Zhu, 2010 unpublished work), 

but the increased interfacing area and H-bonds of the MtAhpE interface suggested that 

multiple mutations may be necessary.  

 

Only single mutations of residues not involved in the active site were introduced in 

order to identify the contribution of individual residues to interface stability, and to 

minimise the chance of affecting protein folding. The four bonding residues were 

therefore chosen as mutation candidates. Alanine scanning has been used in many 

studies to identify important “hotspots” in protein interfaces and to successfully disrupt 

interactions (the production of monomeric insulin is one example [Chen et al., 2000]). 

Mutation to alanine is effectively a side chain deletion, as the H-bonding potential, 

charge, and steric properties of the residue are removed. Single residue alanine 

substitutions were therefore introduced to the A-type interface of MtAhpE at the 

positions of the four bonding residues.  
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A: Interfacing residues    B: Cartoon representation of dimer interface 

                       
Figure 3.2: Interactions at the MtAhpE interfaces 

A: PISA interface analysis suggested the presence of 3 H-bonds, which stabilise the interface. 
H-bonds are shown as black lines. B: located in the interface helix (helix  4 – see section 
1.2.3.1). Bonding residues are shown with stick representation. In A and B region I is shown in 
red, region II is blue, region III is yellow, region IV is orange (section 1.2.4.2).  
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3.3 Purification of wildtype MtAhpE 

 

3.3.1 Expression in an E. coli host 

 

MtAhpE has been successfully expressed and purified as a soluble protein by several 

groups (Li et al., 2005; Hugo et al., 2009; Reyes et al., 2011). The protocol put forward 

by Li et al. was used as an initial purification method and optimised. E. coli expression 

strains were transformed with the plasmid containing the Rv2238c gene encoding 

MtAhpE with an N-terminal his-tag and linker peptide (appendix 3). BL21 Rosetta 

(DE3) cells were used for protein expression as this strain contains a co-plasmid which 

complements the CCC rare proline codon (Looman et al., 1987). Bacteria were cultured 

as described in section 2.2.2 and lysed using the cell press to avoid the heating caused 

by sonication (section 2.2.3). Expression trials indicated that optimum expression was 

achieved when induced cells were cultured at 20°C overnight (figure 3.3). These 

conditions were used for large scale expression. When cells were cultured above this 

temperature two dominant bands were seen when lysates were analysed by SDS-PAGE; 

a band at the expected size for the 19.9 kDa his-tagged MtAhpE construct, and a faster 

migrating band. This suggested a smaller species, thought to be a degradation product, 

as the protein was seen to be unstable even at room temperature (21°C). Trials indicated 

that at 20 and 18°C degradation was less prominent, and when large scale expression 

and chromatography steps were carried out in quick succession this species was 

eliminated (section 3.3.2). It is likely that the N-terminal tail and his-tag were degraded 

as this band could be removed by IMAC purification. A similar band was seen in one 

mutein sample (section 3.6.3), which was confirmed by peptide sequencing to be a 

degradation product. It seemed likely that this was due to N-terminal degradation, 

making it likely that the low molecular weight band in wildtype samples was a similar 

product.   
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Figure 3.3: Expression trials indicated 20°C was the optimal growth temperature for 

expression of MtAhpE 

SDS-PAGE analysis of whole cell lysate of cultures incubated at: lane 2: 37°C for 4 hours; lane 

3: 30°C for 6 hours; lane 4: 26°C for 8 hours; lane 5: 20°C overnight; lane 6: 18°C overnight 

after IPTG induction. The double band migrating at a distance below the 15 kDa marker 

indicates degradation. At 20 or 18°C full length MtAhpE was present and able to be purified. 

The box indicating MtAhpE shows the position that his-tagged MtAhpE migrated to on all 

subsequent gels.  

 

 

3.3.2 IMAC purification 

 

Filtered lysate was loaded manually onto a 5 mL HiTrap™ chelating column which had 

been charged and equilibrated as described in 2.2.4. The column was then washed with 

loading buffer (section 2.1.7) and protein eluted with buffers containing a gradient of 10 

– 500 mM of imidazole. Wildtype MtAhpE bound successfully to the nickel resin, with 

very little protein being seen in the flowthrough or wash fractions. Desired protein 

eluted consistently as a single peak at an imidazole concentration of approximately 120 

mM (figure 3.4A). 0.5 mL fractions were collected across the course of the elution and 

analysed by SDS-PAGE (figure 3.4B). A typical yield of 10 mg protein per 1 L culture 

was achieved after IMAC purification. 
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The monomeric unit of wildtype MtAhpE including the his-tag and linker residues has a 

molecular weight of 19.9 kDa (calculated using the ExPasy online bioinformatics tool; 

Gasteiger et al., 2005; appendix 3). A major band that migrated equivalent to the 20 

kDa marker of the protein ladder on SDS-PAGE analysis was observed in samples 

taken from fractions representing the single peak of the elution phase of IMAC (figure 

3.4A) and assumed to be MtAhpE. Fractions that contained high concentrations of 

MtAhpE (lanes 5-10 of figure 3.4B) were pooled and concentrated (section 2.3.4). 

 

 

A: IMAC elution profile    B: SDS-PAGE gel  

    
Figure 3.4: IMAC purification of wildtype MtAhpE 

A: A representative chromatogram obtained from IMAC purification of MtAhpE. Typical 

loading volumes contained 20 mg his-tagged protein. B: A representative reducing SDS-PAGE 

gel of cell lysate and IMAC fractions of wildtype MtAhpE. MtAhpE was identified as the 20 

kDa band indicated. The following preparations from the course of purification were loaded: 

lane 2: crude cell extract; 3: soluble fraction after lysis and centrifugation; lane 4: IMAC 

flowthrough; 5-10: fractions across the main peak, as indicated with stars on the chromatogram. 

 

3.3.3 Gel filtration chromatography 

 

Considerable impurities remained after IMAC purification. Therefore further 

purification using size exclusion chromatography (section 2.3.2.3) and elution with gel 

filtration buffer (section 2.1.8.2) was always performed. This also exchanged the sample 

into a buffer which was compatible with further experiments and for storage (section 
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2.1.8.2). Typically, a single major peak at an elution volume of about 90 mL was seen, 

with a shoulder indicating a higher weight species at around 75 mL (figure 3.5A). 

Fractions of both the major peak and the shoulder peak ran as a single band at around 20 

kDa on SDS-PAGE (figure 3.5B). The gels revealed good levels of purity with very 

little contaminating protein, consistent with both peaks being MtAhpE and suggesting 

an equilibrium of oligomers in solution. Fractions were collected from regions of the 

peaks indicated to contain over 0.5 mg/mL total protein concentration (section 2.4.2), 

and the purity checked by SDS-PAGE. These fractions were pooled and concentrated as 

described above (section 3.3.2). MS analysis of the purified protein (section 2.4.4) gave 

a molecular weight of 19.83 kDa, confirming the protein to be his-tagged MtAhpE. 

From a typical run, the yield of pure MtAhpE was 60% of the protein loaded. 

 

 
A: Gel filtration elution profile           B: SDS-PAGE of peak fractions 

 

Figure 3.5: Gel filtration resulted in homogeneous samples of MtAhpE 

A: A representative chromatogram obtained from gel filtration purification of MtAhpE. 1 mL 

volumes of IMAC preparations were loaded, typically containing 10 mg of protein. B: A 

representative reducing SDS-PAGE gel showing gel filtration purification of wildtype MtAhpE; 

lanes 2-4: selected fractions across the small peak seen at 75 mL; lanes 5-10: selected fractions 

across the major peak eluting at 90 mL, as indicated on the chromatogram. Occasionally small 

amounts of degradation products were seen (as in lanes 8-10). If these persisted after a second 

gel filtration step the sample was discarded. 
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3.3.4 His-tag removal by rTEV protease  

 

For experiments with native protein the fusion tag first had to be removed, which was 

achieved using recombinant tobacco etch virus protease (rTEV). This left just two 

residues of the peptide linker (see appendix 3). After trialing several conditions (figure 

3.6), cleavage was carried out by incubating MtAhpE with rTEV at a ratio of 1:20 

MtAhpE rTEV at 4°C overnight – this was chosen to maximise cleavage as the MtAhpE 

was unstable at room temperature (Lott, personal communication; section 3.3.1), while 

rTEV is effective at a range of temperatures and incubation times (see section 2.3.4.2; 

figure 3.6). Following his-tag removal the cleaved product was purified through IMAC 

to remove tags, rTEV and uncleaved protein. 

 

 

A: rTEV cleavage in various conditions      B: Final sample purity 

   

Figure 3.6: rTEV cleavage of MtAhpE was successful in number of conditions 

A: A range of conditions were tested to optimise rTEV cleavage. The gel shows a representative 

group of conditions: Lane 2: rTEV alone; lanes 2,5,7 and 9: MtAhpE before cleavage; lanes 4, 

6, 8 and 10: incubation mix after 6 hours at 21°C (1:20 MtAhpE : rTEV), 1 hour at 37°C (1:20 

MtAhpE : rTEV), 6 hours at 4°C (1:20 MtAhpE : rTEV), overnight at 4°C (1:20 MtAhpE : 

rTEV) respectively. B: SDS-PAGE gel of purified MtAhpE protein at 1 mg/mL, as used in 

further experiments. Lane 2 shows his-tagged protein; lane 3 shows cleaved protein. 
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3.4 Characterisation of wildtype MtAhpE 

 

3.4.1 Quaternary structure 

 

3.4.1.1 PAGE analysis 

 

Native-PAGE was used to investigate how physically homogeneous the sample was, 

and indicate the size and proportions of oligomers in solution. This technique separates 

species on their charge and hydrodynamic radius as well as the molecular mass, and has 

the advantage over SDS-PAGE that samples are not denatured and native assemblies are 

maintained (Walker, 2002). Initial analysis was carried out using non-denaturing native-

PAGE electrophoresis (section 2.4.3.1) which appeared to show the presence of some 

oligomers (data not shown), but did not give a clear molecular weight distribution. The 

inconclusive results meant it was decided not to further pursue native-PAGE analysis.  

 

Secondly, the effect of redox conditions on the oligomeric state of the protein was 

analysed. Despite only containing one cysteine residue, it has been suggested that 

MtAhpE monomers are able to form disulfide bonds (Hugo et al., 2009). To test this 

possibility, samples of MtAhpE were incubated in either non-reducing, reducing or 

hyperoxidising conditions (2 mM TCEP or 10 mM H2O2 were added to the buffer for 

reducing and hyperoxidising conditions respectively) to determine if higher molecular 

weight covalent species were formed. It was predicted that the protein would be mostly 

oxidised in non-reducing conditions due to atmospheric oxygen, and could form a 

disulfide bond. Following incubation samples were subjected to both reducing and non-

reducing SDS-PAGE. 

 

After incubation in reducing conditions, wildtype MtAhpE migrated as a single major 

band at a distance equivalent to the 20 kDa marker on a non-reducing SDS-PAGE gel 

(figure 3.7A). When incubated in non-reducing conditions prior to electrophoresis a 

second, higher weight band was seen. This band represented a ~50 kDa species, slightly 
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higher than that expected for a dimer, with a number of higher weight bands indicating 

the presence of larger oligomers. The band intensities suggested that around 50% of the 

monomers present did not form disulfide bonds. Although MS analysis of gel slices was 

not possible at the time of experiment, this would be useful to confirm the oxidation 

state of the protein. 

 

 

A: Non-reducing SDS-PAGE    B: Reducing SDS-PAGE                   

 

Figure 3.7: SDS-PAGE analysis of (1) hyperoxidised, (2) reduced and (3) non-reduced 

MtAhpE showed the presence of dimers 

A: Non-reducing SDS-PAGE revealed the existence of SDS-resistant dimers in the case of 

hyperoxidised and non-reduced MtAhpE, although only about 50 % of the total protein existed 

in this state. Reduced protein was unable to form stable dimers. B: Reducing SDS-PAGE 

confirmed that the dimers seen in the non-reduced sample were due to disulfide bond formation. 

A significant amount of hyperoxidised MtAhpE still migrated as a dimer. 

 

 

 

Hyperoxidised MtAhpE also showed dimers, along with a number of larger oligomers. 

When in the sulfenic or sulfonic acid state, disulfide bonds are not able to form (Wood 

et al., 2003a), so these SDS-resistant complexes are likely due to the formation of 

strong hydrophobic interactions or non-disulfide cross-links. These bands were seen 

irrespective of whether or not the sample was heated after addition of SDS, indicating 

that they are not due to amide cross-linking. It is possible that these complexes were 
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formed through oxidative cross-linking of tyrosine residues. This has been seen to occur 

in the case of some proteins when incubated with a peracid and metal ions (for example, 

Gill et al., 1997). It is possible that nickel ions remaining after IMAC purification could 

allow this tyrosine cross-link to form. 

 

When run on reducing SDS-PAGE, the dimer was only seen in hyperoxidising 

conditions, confirming that the dimer of the non-reduced sample was disulfide bonded 

(figure 3.7B). Bands indicating higher weight species of the hyperoxidised sample also 

persisted in these conditions. This confirms that the interactions are strong non-covalent 

bonds. The reduction in intensity suggests that although hyperoxidation is only 

reversible in vivo by sulfiredoxin (section 1.2.5.1; Woo et al., 2003; Biteau et al., 2003), 

chemical reductants used in vitro  may be able to reduce this state. Hyperoxidation is 

not thought to be a feature of 1-Cys Prxs (Wood et al., 2003b; Koo et al., 2002). The 

observation that a band of equal intensity representing the monomer was seen in 

hyperoxidised samples suggests that it may not be a response that occurs readily in 

MtAhpE, and therefore may not be physiologically relevant.  

 

3.4.1.2 Protein-protein cross-linking experiments 

 

Cross-linking experiments have been used to assess the oligomeric state of other Prxs 

(for example, Gourlay et al., 2003) and were therefore trialled as an analytical step for 

identifying the oligomeric state of MtAhpE in solution (section 2.1.6). The presence of 

lysine residues in the regions involved in dimerisation and oligomerisation (Li et al., 

2005) mean that associated monomers in solution will be chemically linked after 

incubation with glutaraldehyde. Cross-linking was carried out in non-reducing 

conditions (section 2.4.3.3), and samples were analysed by SDS-PAGE (figure 3.8). 

Glutaraldehyde is a commonly used protein cross-linking reagent, and although non-

specific will fix lysine residues within just 4.8 Å under the conditions of this experiment 

(alkaline HEPES buffer; Wine et al., 2007). Cross-linking was carried out at a range of 
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protein concentrations to indicate whether the oligomeric state of MtAhpE is 

concentration dependent. 

 

 

Figure 3.8: SDS-PAGE analysis of cross-linked wildtype MtAhpE suggests the presence of 

oligomers in solution 

A representative SDS-PAGE gel showing migration of samples previously cross-linked with 

glutaraldehyde. Lanes 2-5: Protein concentration of 10 mg/mL cross-linked for 5 minutes, 15 

minutes, 1 hour, 3 hours; Lanes 6-9 Protein concentration of 5 mg/mL cross-linked for 5 

minutes, 15 minutes, 1 hour, 3 hours. 

 

 

 

Cross-linked MtAhpE migrated primarily as two bands, corresponding to 20kDa and 

40kDa, suggesting the presence of a monomeric and a dimeric species. Higher weight 

bands were also seen, indicating the presence of larger oligomers including trimers and 

tetramers.  At higher protein concentrations the increased staining and smearing 

indicates non-specific cross-linking is occurring. Whilst cross-linking is useful for 

indicating a trend, a more specific cross-linking agent would be necessary to draw firm 

conclusions about monomer interactions with this technique.  
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3.4.1.3 Analytical size-exclusion chromatography  

 

Solution studies were carried out to further probe the oligomeric state and build a 

clearer picture of MtAhpE self-assembly. Samples of purified MtAhpE were loaded 

onto the column at a concentration of 1 mg/mL. In non-reducing conditions, wildtype 

MtAhpE ran as two main peaks with near baseline separation (figure 3.9A). The protein 

eluted as a small peak corresponding to a 32 kDa species, and a larger peak 

corresponding to a 274 kDa species (calculated as described in section 2.5.3). The 

smaller species is consistent with a dimer, but the larger species does not fit with the 

expected weight of an octamer (135 kDa), instead in line with two associated octamers. 

A small early eluting peak was also seen; however, the propensity of MtAhpE to 

aggregate and the position of this peak close to the void volume suggest that it was due 

to aggregation.  

 

In reducing conditions the elution profile of MtAhpE was dramatically changed (figure 

3.9B). The protein eluted as one main peak, at a volume equivalent to the dimer seen in 

non-reducing conditions. Calculations suggested a species of 29 kDa. No oligomer peak 

was seen in these conditions, although the dimer peak did display a shoulder on the 

leading edge. This shoulder was not well resolved, but had an elution volume which 

corresponded to a 76 kDa species, indicative of a tetramer. These results confirm that 

MtAhpE is a unique example of a 1-Cys Prx which forms redox sensitive oligomers. 

The redox switch is similar to that seen in typical examples of 2-Cys Prxs; however, the 

switch is reversed with oligomers forming in oxidising rather than reducing conditions, 

which is seen for typical Prxs (Wood et al., 2003a; section 1.2.4). 
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A: Non-reducing conditions     B: Reducing conditions 

       
Figure 3.9: Analytical SEC indicated the redox sensitivity of wildtype MtAhpE 

A:  In non-reducing conditions MtAhpE consistently eluted as a small peak indicating a dimeric 
species, and a large main peak. These corresponded to molecular masses of 32 and 274 kDa 
respectively. B: In reducing conditions MtAhpE eluted as a single peak corresponding to a 27 
kDa species, with a shoulder possibly indicating the presence of a tetramer. Traces are shown 
from 10mL for clarity as peaks earlier than this volume represented aggregates.  

 

 

3.4.1.4 Small angle X-ray scattering 

 

SAXS experiments were carried out at the Australian Synchrotron (section 2.3.5.8), and 

were used to provide information relating to the protein in free solution, removing 

potential matrix interactions which can occur during chromatography, and to improve 

the accuracy of molecular weight calculations. As MtAhpE was prone to aggregation, 

data were collected from samples as they eluted from a size exclusion chromatography 

column, which was routed directly through the capillary (section 2.3.5.8). Samples were 

injected at 10 mg/mL, allowing for dilution on the column of about tenfold (section 

2.3.5.8) for sample analysis at ~1mg/mL. SAXS was not carried out in reducing 

conditions as the tendency for aggregation made data acquisition not possible. 

 

In non-reducing conditions, SAXS data appeared to contradict SEC results somewhat. 

Molecular weight calculations (Konarev et al., 2003; section 2.5.5.2) gave a value of 31 

kDa, consistent with a dimer. The RG calculated from the Guinier region and GNOM 
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plot agree well at 27.3 and 27.5 nm respectively. Although this value is larger than the 

theoretical RG calculated from the crystal structure, 60 residues of the dimer were not 

able to be modelled (Li et al., 2005), which could account for this difference. Dmax was 

calculated to be 80 nm, in line with the expected size of a dimer (82.7 nm; table 3.1). 

The scattering profile (figure 3.10A) showed a smooth curve with no oscillations, 

indicative of a spherical particle (Mertens and Svergun, 2010). The pairwise distance 

distribution function (P(r)) plot showed a bell shaped curve (figure 3.10B), again 

suggesting a spherical particle (Svergun and Koch, 2003). The curve is negatively 

skewed, with an indication of a second maximum. This suggests an elongated, dumbbell 

shaped particle, consistent with the A-type dimer. 

 

Scattering profiles were compared to theoretical profiles generated from crystal 

structures of a dimeric and octameric species (generated from the PDB file, accession 

number 1XXU, Li et al., 2005). Experimental data showed good agreement with the 

theoretical scattering for a dimer (figure 3.11A), but significant misalignment with that 

for an octameric toroid (figure 3.11B), suggesting that an octameric arrangement was 

not present in the samples of MtAhpE analysed.  

 

Table 3.1: Particle dimensions suggest that MtAhpE exists primarily as a dimer 

Comparison of the experimentally derived values are in line with that expected for a dimeric 

species. 

  Dmax 

(Å) 

RG from 

Guinier 

(Å) 

RG from 

GNOM 

(Å) 

MW  

(kDa) 

Untagged MtAhpE                 

non-reduced  80 27.3 27.5 31 

Theoretical dimer  ~ 83 Theoretical RG: 23 34 

68 Theoretical tetramer  ~ 90 Theoretical RG: 27 

Theoretical octamer  ~ 130 Theoretical RG: 42 135 
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A: Scattering profile      B: P(r) plot 

   
Figure 3.10: X-ray scattering data of MtAhpE in non-reducing conditions suggest a 

spherical particle 

A: The scattering profile showed a smooth curve, indicative of a spherical, globular particle. B: 

The P(r) plot shows one maximum, typical of a spherical particle. 

 

 

A: Fitted to theoretical dimer scattering    B: Fitted to theoretical octamer scattering 

   
Figure 3.11: Comparison to theoretical scattering patterns suggested a dimeric species 

A: Overlaying the experimental scattering of non-reduced MtAhpE samples with that predicted 

from the crystal structure of a dimeric species gave a good fit, with a Chi
2 

value of 0.47. B: 

When overlaid with theoretical scattering produced from an octameric species, the traces were 

clearly misaligned, with a Chi
2 

value of 1.7, suggesting that this arrangement was not present in 

experimental samples. 
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3.4.1.5 Transmission electron microscopy 

 

Electron microscopy has been successful in visualising the toroidal structures of other 

Prxs (for example, Harris et al., 2001), and also revealed higher order structures 

including intricate cages and concatenated rings (Meissner et al., 2007; Cao et al., 2005; 

section 1.2.5.3). This technique was used to examine the morphology of the MtAhpE 

assemblies. Initial TEM imaging of negatively stained wildtype MtAhpE showed the 

presence of ring structures (figure 3.12). A 1-Cys Prx from Plasmodium yoelii (PyTrx-

Px1) was suggested to form octameric oligomers (Qiu et al., 2012); however, the 

formation of these toroidal oligomers was recently shown to be an artefact which arises 

due to the N-terminal modifications of the PyTrx-Px1 protein (Gretes and Karplus, 

2013). This study therefore presents the first 1-Cys Prx to be seen to form the rings 

characteristic of the Prx family in solution. Measurement from the micrographs using 

ImageJ software showed the rings to be around 7 nm in diameter; significantly smaller 

than the 15 nm toroid of a typical Prx, and smaller than the 10 nm diameter ring that is 

suggested from the crystal structure of MtAhpE (Li et al., 2005). Grid interactions or 

stain artefacts could cause this apparent compression of the ring. 

 

An interesting feature of the micrographs was the presence of higher order structures. A 

number of micrographs revealed spherical objects which appeared to be clusters of rings 

(figure 3.12).  The clusters were heterogeneous, ranging from 6 to 22 nm in diameter, 

which provides some explanation for the inconsistency of SEC results. The presence of 

clusters across a number of TEM grids indicates that they are not artefacts, which is 

supported by very similar observations by other groups (Jang et al., 2004). The 

tendency for aggregation and heterogeneity of MtAhpE samples prevented further 

investigation of these assemblies and image processing; however, later studies revealed 

the presence of similar assemblies in samples of mutated HsPrx3 (described in chapter 

5).  
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Figure 3.12: A typical TEM micrograph show toroidal oligomers and HMW clusters of 

MtAhpE 

TEM revealed the presence of toroids (highlighted with red boxes and enlarged), along with 

apparent clusters of protein (highlighted with black boxes and enlarged).  

 

 

3.5 The effect of N-terminal modifications 

 

Crystal packing data of MtAhpE suggests that the N-terminal tail may be involved in the 

interactions that stabilise the oligomer building interface (section 1.4.2.3; figure 3.13; Li 

et al., 2005). Modifications to this tail were predicted to influence the self-assembly of 

the dimers, and so were investigated to gain insight into the mechanism behind MtAhpE 

oligomer formation. Leaving the additional residues that form the his-tag and linker 

attached was studied, which added an additional 21 residues to the tail of the protein. 
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Figure 3.13: The octamer building interface is composed of loop interactions 

The crystal structure indicates that the putative B-type interface of MtAhpE is small, burying 

470 Å per monomer, and made of interactions between loop regions. The N-terminal tail is 

suggested to contribute to the interface, and makes significant bonds to the β9 sheet. 

 

 

3.5.1 Analytical size-exclusion chromatography 

 

In reducing conditions his-tagged MtAhpE eluted as a single peak (figure 3.14A), 

calculated to represent a species of 74 kDa, in line with the tetrameric species seen in 

the untagged sample. An early eluting shoulder was observed, with an elution volume 

that was calculated to represent a 156 kDa species. This agrees well with the 159 kDa 

expected for an octameric species In non-reducing conditions, the elution profile of the 

his-tagged protein was unchanged from that seen in reducing conditions (figure 3.14B). 

These results suggest that the presence of the his-tag has a considerable impact on 

MtAhpE self-assembly. The formation of higher order structures was prevented, with a 

tetrameric assembly favoured. The presence of an octameric species agrees with 

previously published results, which were obtained from tagged samples (Li et al., 2005). 
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The absence of this arrangement in untagged samples may suggest that it is in fact an 

artefact of the affinity tag. 

 

 

A: Non-reducing conditions   B: Reducing conditions  

      

Figure 3.14: His-tagged MtAhpE is insensitive to redox conditions 

A: The elution profile of his-tagged MtAhpE in non-reducing conditions showed a single peak, 

which corresponded to a 74 kDa species. A small shoulder was seen, at a volume suggesting a 

156 kDa species. B: The elution profile was unchanged upon the addition of reducing agent. 

The elution profiles of untagged MtAhpE in equivalent conditions is shown as a dashed line for 

comparison (data as in figure 3.10). Elution profiles are shown from 10 – 20 mL for clarity, as 

earlier eluting species were aggregates.  
 

 

3.5.2 Small angle X-ray scattering 

 

In non-reducing conditions, the molecular weight calculated from scattering data was 37 

kDa (see table 3.2). RG calculated from both the Guinier region and GNOM program 

(Svergun et al., 1992) agreed well, giving values of 27.6 and 28 Å respectively. A total 

of 109 residues are missing in the crystal structure of the his-tagged dimer, which could 

explain the increased RG compared to theoretical values. Dmax was calculated to be 82.5 
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Å. All calculations were consistent with a dimer, with the presence of higher weight 

structures not apparent. In reducing conditions the his-tagged construct gave very 

similar results to those recorded in non-reducing conditions (table 3.2).  

 

Table 3.2: Particle dimensions suggest that his-tagged MtAhpE exists primarily as a dimer 

Comparison of the experimentally derived dimensions agree very well with that expected for a 

dimeric species. 

  Dmax 

(Å) 

RG from 

Guinier 

(Å) 

RG from 

GNOM 

(Å) 

MW  

(kDa) 

Tagged MtAhpE 

               Reduced 84 26 27 36 

             Non-reduced  82.5 27.6 28 37 

Tagged dimer  ~ 83 Theoretical RG: 23 40 

80 Tagged tetramer  ~ 90 Theoretical RG: 27 

Tagged octamer 
 

 

~130 
Theoretical RG: 42 159 

 

 

Overlaying the experimental scattering from his-tagged MtAhpE with theoretical 

scattering generated from the A-type dimer in the crystal structure (Li et al., 2005) 

showed a fairly poor fit (Figure 3.15A). As the N-terminal tail is thought to be involved 

in the MtAhpE B-type interface, it was considered that the modification may have 

stabilised this interaction and a B-type dimer might be forming. The experimental 

scattering was therefore also overlaid with that predicted from the crystal structure of 

two monomers associated about the B-type interface (figure 3.15B). This showed a 

slightly better fit than to the A-type dimer, but still did not overlay well. The N-terminal 

linker and his-tag are not modelled in the crystal structure, which could account for the 

poor overlay with experimental scattering. 
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A: Fitted to A-type dimer      B: Fitted to B-type dimer 

  

Figure 3.15: Comparison to theoretical scattering suggests the presence of a B-type dimer in 

non-reducing conditions 

A: When overlaid to theoretical scattering generated from the crystal structure of an A-type 

dimer, the scattering profile of his-tagged MtAhpE did not align well, with a Chi
2
 value of 2.7. 

B: When overlaid with theoretical scattering generated from the putative MtAhpE B-type dimer 

in the crystal structure, the fit of the scattering profile was improved, with a Chi
2
 value of 1.6. 

 

 

 

Taken together, these data are consistent with his-tagged MtAhpE existing as a dimer, 

which is unable to associate into higher order structures. Further studies would be useful 

to investigate the nature of this interface. Intrinsic fluorescence or fluorescence 

resonance energy transfer (FRET) experiments could be used to probe the associating 

regions (Huebsch and Mooney, 2007). It is unclear why the SAXS and SEC results 

suggest different oligomeric states for both the tagged and untagged sample. MtAhpE 

was found to be very unstable, and so it is possible that during transport to the 

synchrotron degradation occurred and affected the protein’s behaviour. Similarly, 

exposure to ionising radiation can affect a protein’s quaternary structure (for example, 

that of some protein kinases; Ahn et al., 2002), and although X-ray doses were kept low 

this may have affected the structure of MtAhpE.  
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3.6 Generation of interface mutations 

 

Mutagenesis of the wildtype gene was carried out using SDM. The double stranded, 

circular plasmid template was mutated using a commercial Quikchange
TM 

kit from 

Stratagene (section 2.2.3). 

 

3.6.1 Mutagenesis  

 

3.6.1.1 Quikchange
TM 

primer design 

 

Primers were designed to substitute residues T76, Q83, W95 and E109 with alanine. 

Codon changes were designed to be as conservative as possible. The Rv2238c gene 

insert on the pProEx Hta vector (see appendix 3) was used as the template for primer 

design. 

 

3.6.1.2 PCR generation of mutants 

 

PCR reactions were carried out as detailed in section 2.2.2, the presence of amplified 

plasmid confirmed by gel electrophoresis and success of mutagenesis checked with 

sequencing (section 4.3.3). Initial reactions using the basic PCR protocol described in 

section 2.2.2 were found to be unsuccessful with the Rv2238c gene, and so a number of 

potential solutions were explored in an attempt to optimise the mutagenesis protocol, 

including annealing and extension temperature and time, polymerase choice and the 

concentration of magnesium ions. M. tuberculosis genes are known to be difficult to 

mutate, due in part to their high GC content (Cole et al., 1998) which can lead to 

inadequate separation of the double stranded template, potential mispriming (Frey et al., 

2008), or secondary structure formation in the template or primers. The addition of 

chemical denaturants or adjuvants such as dimethyl sulfoxide (DMSO) or glycerol can 
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improve strand separation and specificity of the reaction (Varadaraj and Skinner, 1994; 

Winship et al., 1989) and so were tested (table 3.3). Positive and negative controls were 

routinely run to ensure the fidelity of the enzymes and reagents, and confirm 

contamination was not occurring. Single-primer and mega-primer methods (section 

2.2.3; Edelheit, 2009; Ke and Madison, 1997) were also utilised to try to achieve 

successful SDM.  

 

Table 3.3: A number of factors were varied in attempts to optimise SDM 

The steps of the PCR reaction that could fail and lead to unsuccessful mutagenesis are 

summarised below, along with the approaches taken to optimise the reaction. 
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The Q83A mutation was successfully generated upon the addition of 5% DMSO into 

the reaction mixture. Presence of the alanine codon at position 83 was confirmed by 

gene sequencing, carried out by the Auckland Genomics facility. The other three 

mutations were not successful and so the mutated genes for these constructs were 

instead synthesised and purchased from GenScript. 

 

3.6.2 Expression and purification of non-native proteins  

 

Expression and purification was carried out as for wildtype protein (section 3.3). The 

T76A, W95A and E109A muteins bound successfully to the nickel resin, with very little 

protein being seen in the flowthrough or wash fractions, and a clear peak eluting from 

the IMAC column (figure 3.16). Although the trace often showed additional peaks 

suggesting the presence of contaminating proteins, the desired proteins were easily 

identifiable as discrete major peaks. The imidazole concentration at which they eluted 

varied, with T76A, W95A, and E109A eluting consistently at imidazole concentrations 

of approximately 200 mM, 500 mM and 1 M respectively. 0.5 mL fractions were 

collected across the course of the elution, and peak fractions analysed by SDS-PAGE 

(figure 3.17). Typical yields are shown in table 3.4. Following expression and lysis, no 

Q83A protein could be purified by IMAC, and analysis of the extraction steps revealed 

that the protein was insoluble. This is further discussed in section 3.6. 

 

A major band that migrated at a distance equivalent to just lower than the 20 kDa 

marker of the protein ladder on SDS-PAGE analysis was seen in samples taken from 

fractions representing the single peak seen in the elution phase of IMAC (figures 3.16 

and 3.17). MS of the purified samples confirmed the molecular weight to be correct; in 

the case of the E109A mutein shown here, MS analysis gave a monomer weight of 

19.78 kDa compared with a theoretical weight of 19.87 kDa (section 2.4.4). Fractions 

that contained high concentrations of MtAhpE were pooled and concentrated.  
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Muteins were subjected to gel filtration, as for wildtype MtAhpE (section 2.2.4.1 and 

3.3.3), and typically eluted with a similar profile to wildtype (figure 3.18). Fractions 

were collected across both peaks, and both ran as major bands at around 20 kDa on 

SDS-PAGE (figure 3.19). 

 

A: E109A     B: T76A 

     
 
C: W95A     D: Wildtype 

  

Figure 3.16: Representative chromatograms obtained from IMAC purification 

A: E109A; B: T76A and C: W95A mutant constructs of MtAhpE. The chromatogram obtained 

for wildtype MtAhpE is shown in D for comparison. Typical loading volumes would contain 

about 20 mg protein. The dashed line represents the 10 mM – 1 M imidazole gradient used to 

elute the protein.   
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Figure 3.17: Representative SDS-PAGE gel of cell lysis and IMAC purification 

Gel obtained from steps of E109A purification shows typical results. Lane 2: whole cell lysate; 

lane 3: soluble fraction; lane 4: insoluble fraction; lane 5: IMAC flowthrough; lanes 6-9: 

fractions across the peak seen in figure 3.16A. The mutein was identified as the band of 

approximately 18 kDa indicated by the black box. SDS-PAGE gels for the other mutated protein 

purifications can be found in appendix 3. 

 

 

 

Both the major peak and the smaller shoulder peak of gel filtration purification ran as a 

single band at around 20 kDa on SDS-PAGE. The gels revealed good levels of purity 

with very little contaminating protein, and were consistent with both the major and 

shoulder peaks being due to UV absorbance of MtAhpE muteins. Fractions were 

collected and pooled as for wildtype, resulting in sufficiently pure preparations (figure 

3.20). 
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A: E109A     B: T76A 

 
C: W95A      D: Wildtype 

 
Figure 3.18: Representative chromatograms obtained from gel filtration purification of 

MtAhpE muteins 

A: E109A; B: T76A; and C: W95A. The gel filtration elution profile of wildtype MtAhpE is 
shown in D for comparison. All muteins showed similar elution profiles with one major peak, 
and a shoulder peak in the case of the E109A and T76A constructs. SDS-PAGE analysis of the 
main and shoulder peaks confirmed them to represent MtAhpE muteins (figure 3.16; appendix 
3). 

 

Figure 3.19: Representative reducing SDS-PAGE gels of gel filtration purification 

Gel obtained from steps of E109A purification shows typical results. Lanes 2-4: fractions across 
the shoulder peak; lanes 5-8: fractions across the later eluting major peak seen in figure 3.15A. 
The mutein was identified as the band of approximately 19 kDa indicated by black box. SDS-
PAGE gels for the other mutated protein purifications can be found in appendix 3. 
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Figure 3.20: Two steps of chromatography resulted in highly pure mutein samples 

SDS-PAGE analysis of mutein samples loaded at 1 mg/mL. Lane 1: E109A; lane 2: T76A and 

lane 4: W95A muteins. 

 

 

 
Table 3.4: MtAhpE and muteins expressed at low levels 

Although expression and purification of the wildtype protein and muteins was achieved to a 

high level of purity, the total amount of protein was low. 

Construct Pellet 

weight (g)  

Mass of protein 

after IMAC 

(mg) 

Mass of protein 

after gel filtration 

(mg; final yield) 

Mass of protein 

per gram cells 

(mg) 

Wildtype 

MtAhpE 
3.9 9.6 6.6 1.7 

E109A 4 9.8 3 0.75 

T76A 3.6 6.2 1.7 0.47 

W95A 3.6 8.3 2.6 0.72 
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3.6.3 Expression of the Q83A mutein 

 

3.6.3.1 Q83A mutein was expressed following IPTG induction 

 

Introduction of interface mutations often leads to insolubility of the corresponding 

protein, due to changes in tertiary structure, or more commonly, exposure of a large 

hydrophobic area which would normally be buried in the interface. This results in 

association of mutated proteins, forming insoluble aggregates (for example, attempts to 

disrupt the dimerization of the HIV-1 integrase enzyme resulted in insoluble protein for 

most of the mutations tried; Serrao et al., 2012). No protein was able to be purified from 

the gene containing the Q83A mutation in the conditions used for wildtype purification. 

Transformation into BL21 Rosetta (DE3) competent cells (section 2.2.1.4) was 

successful, with antibiotic resistance confirming the uptake of the pProEx vector 

containing the mutated gene. Bacteria grew well in the conditions described in section 

2.2.2, and addition of IPTG led to expression of the mutein, as determined by SDS-

PAGE analysis of lysed samples which had been grown in standard conditions (figure 

3.23A). The major band on the gel migrated at a distance equivalent to the 15 kDa 

marker (figure 3.21A), suggesting a monomer significantly smaller than the 19.9 kDa 

expected for the his-tagged construct. Samples of the whole cell lysate were taken at 

time points after IPTG induction and analysed by SDS-PAGE (figure 3.23B). The 

increase in the intensity of the band following induction indicated that it is expressed in 

response to IPTG so is likely the Q83A mutein.  
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A: Whole cell lysate      B: After induction 

                 

Figure 3.21: SDS-PAGE analysis suggested successful expression of the Q83A mutein 

A: Analysis of the whole cell lysate grown at 20 °C overnight post induction revealed a major 

band around 16 kDa. B: SDS-PAGE analysis of whole cell lysate from cells 1 hour (lane 2), 2 

hours (lane 3), 4 hours (lane 4), 6 hours (lane 5) and 12 hours (lane 6) after induction with 0.6 

mM IPTG showed an increase in intensity of the band at 16 kDa. 

 

  

 

3.6.3.2 Solubility screening of the Q83A mutein 

 

Following expression and lysis, no protein could be purified by IMAC. Analysis of the 

extraction steps revealed that the protein had all remained in the insoluble fraction after 

cell lysis, which was confirmed by SDS-PAGE (figure 3.22). The Q83 interaction 

appears to stabilise the dimer by connecting the top of the alpha helices at the interface 

(figure 3.2B). This interaction is unique to MtAhpE and so could be important in 

creating the stable A-type interface. The insolubility of the construct appears to confirm 

the importance of this interaction, and possibly suggests that mutation has successfully 

disrupted the dimer interface. Disruption of this interface would lead to the exposure of 

a large hydrophobic area, which could result in aggregation and insolubility. The Q to A 

mutation would also increase the hydrophobicity of the region, further increasing the 

chance of aggregation.  
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In order to overcome the purification problems, solubility screens were carried out. 

Altering the growth media, induction time and temperature down to 10°C, and 

autoinduction (section 2.3.1.3) were not successful. The composition of the lysis buffer 

was then tested as summarised in tables 3.4 and 3.5. 

 

 

 

 

Figure 3.22: Q83A expression resulted in insoluble protein 

A typical SDS-PAGE gel of Q83A expression trials. For small scale trials, IMAC purification 

was carried out using the batch method (section 2.3.2.1). Overexpression of Q83A was 

achieved, as indicated by the strong band in the whole cell lysate, but no mutein was seen in any 

fractions other than the insoluble fraction. Lane 2: whole cell lysate; lane 3: soluble fraction; 

lane 4: first IMAC flowthrough; lane 5: second IMAC flowthrough; lane 6: first IMAC wash; 

lane 7: second IMAC wash; lane 8: first IMAC elution; lane 9: second IMAC elution; lane 10: 

insoluble fraction. 
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Table 3.5: A number of variations to the lysis buffer were considered to optimise solubility 

The alterations to buffer composition that were trialled are described below. The alterations have 

been seen to be successful for solubilising other proteins, often those that are highly insoluble 

such as membrane proteins. 
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Alteration to buffer 
composition 

Increased ionic strength 

Decreased ionic strength 

Nature of the ionic 
strength 

Inclusion of detergents 

Inclusion of glycerol 

Increased or decreased pH 

Inclusion of reductant 

Rationale 

Salts shield electrostatic effects, and can 
prevent aggregation caused by exposure of 
acidic residues 

Lower salt concentration is known to decrease 
the hydrophobic effect thus preventing the 
exclusion of water molecules from 
hydrophobic surfaces 

Different ions can affect the solubility of a 
protein through their interaction with the 
protein 

Non-ionic amphipathic detergents counteract 
the hydrophobic effect. Commonly used for 
membrane protein solubilisation with 
denaturation 

Glycerol coats the surface of protein 
molecules, stabilising hydrophobic areas. It 
may also alter the volume of the protein which 
can aid solubility. 

Although mutation does not alter the pi of the 
protein, solvent-exposed residues may change. 
Altering the charges present on the protein 
surface through pH changes may increase 
solubility 

The presence of cysteine residues in the 
sequence may lead to disulfide bond 
formation and aggregation 

Addition of L-amino acids L-glutamic acid and L-arginine may mask 
surface charges or coat hydrophobic regions 
and are often used in crystallography to 
increase solubility 

Reference 

Elcock and McCammon, 
1998 

Zhou,2005 

Hofmeister, 1888 
Zhou,2005 

Rosenow eta/., 2002 

Vagenende,2009 
Farnum and Zukoski, 
1999 

Perry, 2009 

Golovanov eta/., 2004 
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Table 3.6: Lysis buffer compositions 

The lysis buffers detailed below were trialled for small scale protein extraction. 

 

 

Cells were cultured as for wildtype protein expression, and lysed in the appropriate 

buffer. Soluble protein was produced from only one buffer condition – 20 mM HEPES, 

10 mM imidazole, 150 mM NaCl, 50% glycerol.  The apparent low molecular weight of 

the mutein suggested degradation, and correct folding was checked through examination 
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of the CD spectrum and subsequent tertiary structure analysis (section 2.5.1), which 

indicated that the construct was correctly folded (table 3.6, figure 3.23). 

 

Table 3.7: CD analysis indicated that the Q83A mutein was correctly folded 

CD spectra were analysed using the Dichroweb online server (Whitmore and Wallace, 2004), 

which revealed both the wildtype and Q83A constructs of MtAhpE contained equivalent helix, 

strand and loop structures. 

Construct Helices Beta 

sheets 

Turns Disordered 

loops 

Total 

Wildtype   

MtAhpE 

6.3% 38.7% 22% 33% 100% 

Q83A 5.7% 39.3% 22% 33% 100% 

 

 

Although the mutein appeared correctly folded, MS analysis gave an absolute weight of 

16.87 (compared to an expected 19.9 for his-tagged mutein) confirming that degradation 

was occurring (appendix 5). Complete peptide sequencing could not be achieved, and so 

this could not be confirmed. Inclusion of protease inhibitors or EDTA into the lysis 

buffer did not prevent this degradation, suggesting it may not due to contaminating 

proteases. Due to the difficulty in preventing degradation and incompatibility of the 

lysis buffer for additional analysis, further characterisation of the mutein was not carried 

out. 
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3.7 Characterisation of muteins 

 

3.7.1 Analytical size-exclusion chromatography 

 

Although initial purification of MtAhpE muteins indicated successful expression, and 

soluble protein was purified, the propensity of the constructs to aggregate and their 

instability at room temperature made obtaining sufficient amounts of protein for 

experimentation difficult. His-tag cleavage with rTEV protease required a third step of 

chromatography, with the associated loss of protein meaning that the final amount of 

mutein was minimal. Therefore only tagged muteins were able to be analysed. 

 

When analysed by analytical SEC, all three muteins appeared to behave in an identical 

manner. The elution profile showed a single peak, at an elution volume that 

corresponded to a species of 31 kDa (figure 3.23). This was consistent with muteins 

degrading to a 15 kDa species (as was seen in some conditions for wildtype protein, and 

Q83A mutein; sections 3.3.1 and 3.6.3), leading to formation of dimers with a lower 

weight than expected. MS analysis was carried out on the T76A and E109A muteins 

(MS of the W95A mutein was unsuccessful), and gave molecular weight values of 

19.69 and 19.87 kDa respectively, indicating no degradation. It is likely, therefore, that 

muteins were in fast equilibrium between a dimer and a monomer, compared to the time 

of experiment. The peaks seen on the elution profile were broad, supporting this. This 

shift to a later elution volume indicates that the introduction of alanine substitutions at 

the dimer interface has successfully destabilised one of the interfaces, likely the A-type 

interface. The monomer-dimer equilibrium suggests that the A-type interface is still able 

to form, though more weakly, and therefore easily dissociates. A second possibility is 

that the dimers are forming about the B-type interface, which is a weaker interface, and 

therefore exist in this equilibrium. Further studies would be useful to confirm the nature 

of the mutein dimers, intrinsic fluorescence or FRET could reveal the interface that is 

forming. 
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Figure 3.23: Analytical SEC suggested MtAhpE muteins exist as a mixture of species 

All three of the muteins eluted as a single broad peak. The peak appeared to correspond to a 

mixture of dimeric and monomeric species, with no larger assemblies seen. The trace is shown 

from 10 – 25 mL for clarity. Prior to 10 mL any peaks seen are due to aggregation. Muteins are 

shown as: E109A black line; T76A dashed line; W95A dotted line. Tagged wildtype MtAhpE is 

shown in red for comparison. 

 

3.7.2 SDS-PAGE analysis 

 

As insufficient amounts of the muteins were produced to be able to carry out further 

solution studies, SDS-PAGE analysis was used to assess the quaternary structure of the 

samples as small volumes of protein could be used. Wildtype MtAhpE was seen to 

change its oligomeric state in response to a change in redox conditions (section 3.4.1.2), 

with oxidation inducing oligomerisation. This suggested that intermolecular disulfide 

bonds may be forming and stabilising the oligomeric species, which was supported by 

SDS-PAGE analysis (section 3.4.1.1). This response was investigated in the case of the 

muteins by subjecting them to hyperoxidising or reducing conditions through incubation 

for one hour with 10 mM H2O2 or 2 mM TCEP respectively. Non-reduced samples were 

also analysed with the assumption that these would be oxidised due to atmospheric 

oxygen. In the hyperoxidising buffer the cysteine residues would be oxidised to the 

sulfinic or sulfonic acid form. The pre-treated samples were then analysed by non-

reducing SDS-PAGE (section 2.4.3.2) to test for disulfide bonded assemblies. The 
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samples were further analysed by subjecting them to reducing SDS-PAGE to confirm 

that any assemblies seen were due to intermolecular disulfide bonds.  

 

Non-reducing SDS-PAGE 

Hyperoxidised and non-reduced wildtype MtAhpE was able to form SDS resistant 

dimers due to strong non-covalent interactions or non-disulfide cross-links (section 

3.4.1.1), and disulfide bonds respectively (section 3.4.1.1). Non-reduced muteins were 

also able to form a disulfide bonded dimer, but to a lesser degree than the wildtype. The 

presence of dimeric species was indicated in E109A and T76A hyperoxidised mutein 

samples (figure 3.24; W95A was unable to be analysed in hyperoxidising conditions 

due to its tendency to aggregate). Again, the intensity of this band was significantly 

reduced compared to that of the wildtype sample. The decrease in dimeric species 

suggests that in all cases studied, the interface was weakened by mutation. Visual 

examination of the gel image suggests the dimer band of the W95A mutein to be the 

most intense, and that of E109A to be the least. This implies an order of the degree of 

interface disruption: E109A > T76A > W95A. This could be confirmed by carrying out 

analytical ultracentrifugation (AUC) to test the equilibrium constants of the muteins. 
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Figure 3.24: Non-reducing SDS-PAGE revealed the ability of muteins to form dimers 

Constructs were (1) hyperoxidised, (2) reduced or (3) untreated prior to reducing SDS-PAGE 

analysis. All muteins formed dimers after incubation in non-reducing or hyperoxidising 

conditions, although to a lesser degree than wildtype, with the monomer being the predominant 

species for all three. The E109A mutein appeared to be an unstable construct, with laddering 

and lower weight bands suggesting significant degradation. Interestingly, this did not occur 

when the protein was hyperoxidised. Wildtype results as discussed in section 3.4.1.1 are shown 

for comparison. 

 

 

Reducing SDS-PAGE 

Samples were also run on reducing SDS-PAGE to differentiate between non-covalent, 

and disulfide bonded dimers. In contrast to wildtype (discussed in section 3.4.1.1), none 

of the muteins appeared to form significant non-disulfide interactions. In all cases the 

predominant band seen was that relating to a monomeric species. Some faint bands were 

seen in the case of the T76A and W95A mutein, but did not represent a considerable 

amount of the total population. This further supports that the mutations disrupt the A-

type interface, preventing stabilisation due to hyperoxidation which was seen in 

wildtype samples. 
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Figure 3.25: Reducing SDS-PAGE revealed that the oligomers seen previously were mostly 

due to disulfide bond formation 

Constructs were (1) hyperoxidised, (2) reduced or (3) untreated prior to reducing SDS-PAGE 

analysis. All muteins showed a significant reduction in the formation of dimers, with the 

monomer being the predominant species on SDS-PAGE. Wildtype results as discussed in 

section 3.4.1.1are shown for comparison. 

 

 

3.8 Discussion 

 

Enzymes involved in M. tuberculosis antioxidant defence have been seen to be 

upregulated during the pathogen’s dormant phase (Murphy and Brown, 2007; Voskuil et 

al., 2004). This dormancy is responsible for the latency of tuberculosis, during which 

the bacteria are resistant to antimicrobial agents (Wayne, 1994), and so is an important 

target for prevention of disease progression. Although the role of MtAhpE is poorly 

studied, its regulated expression in response to stress conditions has been reported 

(Murphy and Brown, 2007), and has led to the suggestion of MtAhpE as a possible drug 

target, worthy of further investigation (Hugo et al., 2009). An octameric oligomer is 

rare among members of the Prx family, and the mechanisms behind its formation were 

therefore of interest from both a biomedical and nanotechnological stand point (section 
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1.6). The data presented here provide some insight into the oligomeric properties of 

MtAhpE, and the factors that affect oligomerisation. 

 

3.8.1 Quaternary structure of untagged MtAhpE 

 

The results of this study confirm that untagged MtAhpE forms large redox-sensitive 

assemblies, which dissociate to dimers in the presence of a reducing agent. Disulfide-

bonded dimers were seen to occur, a feature that has not been observed in any other of 

the 1-Cys Prxs. The disulfide bond likely forms across the A-type interface, and is 

therefore unlikely to be directly responsible for stabilising the oligomer-building B-type 

interface. Its formation may instead induce conformational changes that facilitate the 

formation of the B-type interface. Reduction has been reported to cause the movement 

of the β9-α5 external loop toward the α4-β8 loop and the A-type interface (Li et al., 2005, 

figure 3.26), thereby causing a shift in the β9-sheet. This sheet is equivalent to the β7 

sheet that forms the B-type interface of typical 2-Cys Prxs (Wood et al., 2002), and is 

thought to be involved in the putative B-type interface of MtAhpE (Li et al., 2005). The 

shift in reducing conditions could therefore lead to disruption of the interface, with the 

opposite movement during oxidation putting the β9 sheet into a favourable position to 

allow oligomerisation.  

 

A small amount of tetrameric species was seen in reducing conditions, which has not 

been reported by other groups. The existence of tetrameric assemblies of an equivalent 

Prx (Prx5 from Haemophilus influenzae, which forms analogous A-type, redox 

insensitive dimers; Kim et al., 2003), supports the data presented here. Tetramers of 

MtAhpE may be a physiologically relevant arrangement. In the crystal structure, 

octameric oligomers were seen to associate laterally and form long tubes (Li et al, 

2005), similar to the HMW species seen in other Prxs (section 1.2.5.3).  
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Table 3.8: Oligomeric states of Prxs change with redox state 

MtAhpE shows unusual oligomeric properties, with the dimer being predominant in reducing 

conditions, and the oligomer favoured in oxidising conditions. Oligomerisation appeared more 

complex than that of 2-Cys Prxs, with a number of high weight structures forming in non-

reducing conditions. 

Protein Oxidised Reduced Hyperoxidised 

Untagged MtAhpE HMW, Dimer Dimer, Tetramer Unknown 

Tagged MtAhpE Tetramer, Octamer 
Tetramer, 

Octamer 

Dimer (Hugo et 

al., 2009) 

Typical 2-Cys Prx Dimer Decamer Decamer 

 

 

 

Figure 3.26: Loop movements may lead to B-type interface formation 

The authors (Li et al., 2005) suggest that in the reduced form, an external loop (residues 133 – 

139, coloured red) moves 4 Å towards the α4-β8 loop (residues 107 – 115, coloured pink) as 

indicated by the arrows. This would cause a movement of the β9 sheet, which is equivalent to 

the β7 sheet that forms the B-type interface of typical 2-Cys Prxs. 

 

 

Hyperoxidation led to the formation of SDS resistant dimers, likely due to persistent 

hydrophobic interactions. Hyperoxidation has been seen to result in highly stable 
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interactions between monomers in typical 2-Cys Prxs (Pace et al., 2013), and the data 

presented here suggest that MtAhpE is capable of forming equivalent interactions. 

Hyperoxidation is thought to lead to the unwinding of helix α2 and the CP loop pf Prxs, 

due to the increased volume and hydrophilicity of the sulfinic/sulfonic acid group 

(Saccoccia et al., 2012). In MtAhpE this loop is in close proximity with the β9-α5 and 

α4-β8 loops, therefore, movement of the CP loop in response to hyperoxidation may 

cause similar movements to that seen upon reduction (i.e. a shift in the β9-sheet, 

discussed above, figure 3.22). This could prevent oligomerisation of hyperoxidised 

dimers of MtAhpE, which has been reported (Hugo et al., 2009). It is likely that the 

SDS-resistant dimers are forming about the A-type interface, analogous to typical 2-Cys 

Prxs (Low et al., 2008), but further study using FRET or intrinsic fluorescence would be 

useful to confirm this. 

 

The formation of the hyperoxidised and reduced toroids seen in typical 2-Cys Prxs is 

thought to occur through different mechanisms (Muthuramalingam et al., 2009). The 

nature of the A-type interface stabilisation in hyperoxidised 2-Cys Prxs is not known 

(Pace et al., 2013), and the observation of the 1-Cys MtAhpE behaving in a similar 

manner may provide some insight. There is some debate as to whether the 

conformational changes that lead to toroid formation occur while the subunits are free 

dimers, or while they are assembled into toroids (König et al., 2013; Muthuramalingam 

et al., 2009; Pace et al., 2013). It seems unlikely that the mechanism for hyperoxidised 

toroid formation involves the dissociation of the reduced toroid, as this would require 

formation of the disulfide bond which would protect the cysteine from further attack by 

oxidising agents (section 1.2.4.4). It can be theorised that hyperoxidation occurs without 

dissociation, and the results of this chapter supports this theory. The MtAhpE A-type 

interface is maintained in all conditions; disassembly is therefore not a requirement for 

the transition from the reduced to hyperoxidised state. The conservation of this interface 

across the Prx family could mean that these results are relevant to the typical 2-Cys Prxs 

(figure 3.27). It has also been suggested that the influences that lead to oligomerisation 

(Wood et al., 2003a, section 1.2.4.4) are intrinsically different in reducing and 
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hyperoxidising conditions, although the same interface is stabilised (Saccocia et al., 

2012). This chapter supports this theory, as although MtAhpE forms strong dimers in 

reducing or hyperoxidising conditions, differences are seen in the stability of the dimer, 

indicating a different mechanism of stabilisation. Further analysis by AUC would be 

useful to probe the differences in stability. 

 

 
A: Propensity to hyperoxidation may be   B: Hyperoxidation may occur once       
determined by dimer conformation.    assembled into toroids. 

  

Figure 3.27: Possible mechanisms for reduced and hyperoxidised toroid formation of 
typical 2-Cys Prxs 

A: It has been suggested that conformational changes within the dimer determine its propensity 
to hyperoxidation, and therefore toroid formation forms from either reduced or hyperoxidised 
dimers (König et al., 2013). B: A second mechanism has been proposed which suggests that 
reduced dimers associate to toroids, which can then be hyperoxidised to a more stable toroid 
whilst assembled (Pace et al., 2013). It is proposed here that the A-type interface may not 
need to dissociate for hyperoxidation to occur. 
 

 

Electron microscopy revealed the presence of oligomeric rings. Along with the 

published X-ray structure of the his-tagged protein, this provides evidence for the 

existence of a typical oligomeric toroid being accessible to MtAhpE. However, as 

solution studies were limited and lack of a homogeneous sample made TEM image 

processing not possible, the precise nature of these toroids remains unclear, and the 

octameric arrangement in dilute solution remains unconfirmed. 
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3.8.2 Quaternary structure of his-tagged MtAhpE 

 

When the his-tag was present, the sample was more stable and homogeneous (section 

3.3). It also had a significant effect on the quaternary structure. The differences between 

the reduced and oxidised state were not clear, but the primary arrangement seen in 

solution appeared to be a tetramer (figure 3.14). Although not previously reported in the 

case of MtAhpE, a tetrameric arrangement has been seen to occur in other 1-Cys Prxs 

(Kim et al., 2003). Crystallisation drives the formation of crystal packing contacts, 

which can be artefacts, but are usually representative of biologically relevant protein-

protein interactions (Janin and Rodier, 1995). However, non-physiological associations 

can occur (Carugo and Argos, 1997), and it may be that the crystal packing favoured the 

octamer, which represented only one of many species in solution (figure 3.14). The 

octamer was not detected in any conditions in the untagged sample. The N-terminal 

region is suggested to be involved in the octamer-building, B-type interface of MtAhpE 

(Li et al., 2005). It is apparent that the N-terminal his-tag affects quaternary structure, 

possibly through altering the conformation of this region. It may be that the tag causes 

the N-terminal tail to adopt a more ordered secondary structure, or the 25 residues of the 

his-tag and linker may force movement of this region, leading to the formation of the 

tetrameric and octameric species. While it is obvious that MtAhpE is capable of forming 

a number of arrangements, it is concluded that the octamer seen in the crystal structure 

is likely to be an artefact of the his-tag, and may not be the primary arrangement of 

native MtAhpE. The his-tag also appears to be responsible for the lack of high 

molecular weight structures seen in some solution studies (Hugo et al., 2009). It is clear 

that detailed study of the untagged protein are necessary to complete our understanding 

of the oligomeric properties of MtAhpE. 

 

Further investigation into the role of the N-terminal tail in oligomerisation may also be 

beneficial. In future the quaternary structure of a N-terminal truncation mutein could be 

analysed in solution and through X-ray crystallography, to ascertain whether the N-

terminal tail does contribute to the interface, and the arrangement it adopts. This would 
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also highlight the influence that the his-tag has on the structure of this region. Further 

investigation through adding N-terminal extensions, including residues to introduce 

rigidity (such as proline) could provide more insight. 

 

3.8.3 HMW forms of MtAhpE 

 

The solution data presented here revealed the presence of HMW species in solution, 

although molecular weights for such species were not able to be ascertained. Although 

the SEC data presented in section 3.4.1.2 show a typical trace, results were not easily 

reproducible. Additional peaks were sometimes present, and the elution volume of the 

major peak varied, suggesting different species were present. This is consistent with the 

association of toroids in transient assemblies that formed on the time scale of the SEC 

experiment.  Oxidation resulted in the formation of higher weight forms, which until 

now had not been reported in the case of 1-Cys Prxs. The data presented here suggest 

that MtAhpE may be capable of forming a number of higher molecular weight 

structures, which may have contributed to the paucity of information in the literature 

regarding the nature of MtAhpE quaternary structure, as aggregation occurred quickly, 

and samples were not homogeneous. TEM suggested the presence of very high weight 

“clusters” of protein, which are possibly represented by the void volume peaks that 

appeared on SEC (section 3.4.1.2). These are similar to those reported by other groups, 

formed by hyperoxidised 2-Cys Prxs (Jang et al., 2004), which suggests they are not 

artefacts or random aggregates. A switch from peroxidase to chaperone activity through 

changing the oxidation state of CP has been reported for 1-Cys Prxs (Kim et al., 2011). 

Although the quaternary structure was not investigated, the change in activity strongly 

suggests that HMW structures may be forming. No structures of 1-Cys Prx HMW 

species have been reported, and although more work is needed to confirm the precise 

nature, this thesis therefore presents the first suggestion of such a structure. The 

presence of these species may indicate potential chaperone activity of MtAhpE, which 

could be tested using a holdase activity as described in Jang et al. (2004). The 
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appearance of these structures when oxidised rather than hyperoxidised (as seen for 2-

Cys Prxs) could be because the highly oxidising environment that M. tuberculosis exists 

in requires high levels of chaperone activity. Therefore the oxidative stress threshold at 

which MtAhpE HMW species formation occurs is lower than that seen for typical 2-Cys 

Prxs, and oxidation rather than hyperoxidation is sufficient to induce this aggregation.  

 

3.8.4 Quaternary structure of MtAhpE muteins 

 

Substitution of three of the bonding residues at the A-type interface disrupted the 

association. Given the stability of the A-type interface of MtAhpE, it was somewhat 

surprising that single mutations appeared to have a significant impact on the formation 

of this interface. This could suggest that individual interactions contribute considerably 

to the bonding energy, rather than interface formation being driven mostly through the 

hydrophobic effect. It could also be that individual residue mutations have indirect 

effects and lead to the loss of more than one interaction. Further structural studies such 

as crystallography would clarify this. The concept of interface hotspots is well known, 

and the mutation of single residues resulting in prevention of interactions has been 

observed (Bogan and Thorn, 1998). The results of the mutations introduced here suggest 

that the binding energy of MtAhpE dimers is maintained by a small number of specific 

interactions. Isothermal titration calorimetry and AUC could be used to probe this 

theory, and also provide information regarding the concomitant changes in stability 

upon the introduction of the mutations. This could be useful to assess the relative impact 

of each mutation, that was suggested by SDS-PAGE analysis to be E109A > T76A > 

W95A. The A-type interface is thought to be linked to catalytic activity (Sarma et al., 

2005), and it is possible that disruption of this interface could decrease MtAhpE 

activity. The muteins generated in this study could provide useful constructs to test this 

hypothesis, and identification of interface hotspots could reveal avenues to design small 

molecule interface disruptors with the potential to influence protein activity. However, 
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the inherent instability of the protein and its muteins meant that further study took a 

lower priority than work on HsPrx3 (chapters four to six). 

 

3.8.5 Summary and outlook 

 

This study reveals that the behaviour of MtAhpE is considerably more complex than 

previously thought, and although some new information was obtained, further study is 

very much needed to understand the quaternary structure. The protein is capable of 

forming a number of different oligomers, and its propensity to aggregation made the 

analysis of these challenging. The discrepancies in the literature and variation of results 

seen in this study between techniques, and even repeated experiments, suggest that 

oligomerisation of MtAhpE is highly dynamic and tightly controlled by a number of 

factors. Slight differences in factors such as temperature during, or prior to sample 

analysis could account for the variations seen in behaviour between samples run in 

different locations.  

 

The A-type interface is thought to be the more ancestral mode of Prx association, as it is 

more widespread than the B-type interface (Sarma et al., 2005). It is proposed that 2-

Cys Prxs evolved from ancient bacterial Prxs, whose function was exclusively as 

protective antioxidant enzymes, to become regulators of peroxide signalling in higher 

organisms (Wood et al., 2003b). The ability of MtAhpE to form oligomers and HMW 

structures, unique among the 1-Cys Prxs, and its sensitivity to hyperoxidation despite 

the lack of motifs thought to be required, could be suggestive that MtAhpE represents 

an evolutionary intermediate. This could explain the apparent ease with which the A-

type interface was disrupted, as an evolutionary shift could have occurred to favour a B-

type dimer, with the A-type interface therefore becoming less stable. Study of this 

protein could therefore be of high significance to all members of the widespread Prx 

family. 
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While the study of wildtype MtAhpE has provided some insight into the protein’s 

behaviour, and potentially informed some of the mechanisms involved in typical Prx 

assembly, a detailed characterisation was unable to be carried out. A robust, 

reproducible method for producing high yields of the protein is necessary, and 

techniques for characterisation need to be optimised. This was not possible during the 

course of this research. Controlling the self-assembly of Prx subunits was a major goal 

of this research (section 1.6). Although the unusual potential octamer made MtAhpE an 

attractive system to study in parallel with the typical HsPrx3, the difficulties described 

meant that at this time it was not considered a useful candidate for the design of 

structures with altered or controllable assembly.  
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Chapter 4 Human Prx3 

 

4.1 Introduction 

 

This chapter describes the detailed characterisation of HsPrx3 using a number of 

biophysical techniques. After expression and purification, the influence of 

environmental factors on oligomeric state was assessed. The factors studied were redox 

conditions, the presence of an N-terminal his-tag, solution pH and protein concentration. 

SEC/SLS was used to indicate the size and relative proportion of protein species in 

solution, and SAXS data were collected to more accurately determine the weight of 

species present when the samples were monodisperse. TEM gave finer morphological 

detail and enabled close examination of the structures formed by HsPrx3.  

 

The X-ray crystal structure of HsPrx3 has not yet been solved, and so the crystal 

structure of the bovine homologue, BtPrx3 ,which shares 93% sequence homology with 

HsPrx3 (Cao et al., 2005), has been used as a structural reference. The pH of the 

mitochondrial matrix is ~7.8 (Porcelli et al., 2005), and with early trials showing 

HsPrx3 to be stable and soluble at pH 8.0 all buffers were kept at this pH throughout 

this work (except when the effect of altered pH on quaternary structure was 

investigated).  
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4.2 Purification of wildtype HsPrx3 

 

4.2.1 Expression in an E. coli host 

 

The HsPrx3 gene contains a number of rare codons (see appendix 4), therefore BL21 

Rosetta (DE3) competent cells (Invitrogen) were used for protein expression (section 

2.1.3). Bacteria were cultured as described in section 2.2.2. Various induction times and 

temperatures were trialled (as in section 3.3.1), with high levels of expression achieved 

using standard expression protocols (section 2.3.1.2) and overnight culturing at 21°C 

following induction. Cells were lysed using a cell press (section 2.3.1), which was 

found in early expression trials to be up to ten times as efficient as sonication, based on 

soluble protein yield (table 4.1; figure 4.1). The supernatant was collected for IMAC 

purification, which typically resulted in a final yield of 80 – 100 mg/L.  

 

 

 

 

Table 4.1: Cell press extraction provided a more efficient lysis technique 

Comparisons of the weight of protein extracted from 1L cell cultures grown in identical 

conditions differed drastically depending on lysis technique. Sonication was seen to be inefficient 

with low yields compared to that of cells lysed with the cell press, and so was not used for cell 

lysis during protein production. 

Lysis 

method 

Pellet 

weight (g) 

Weight of 

protein after 

IMAC (mg) 

Weight of 

protein after gel 

filtration (mg; 

final yield) 

Weight of 

protein per gram 

cells (mg) 

Sonication 4.3 40 9 2.1 

Cell press 5.6 120 80 14.3 
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4.2.2 Purification by chromatography 

 

Filtered lysate was loaded manually onto a 5 mL HiTrap™ IMAC chelating column 

which had been charged and equilibrated as described in section 2.3.3.1. The column 

was then washed with loading buffer (section 2.1.8.2) and protein eluted with elution 

buffers containing a gradient of 10 – 500 mM of imidazole. Wildtype HsPrx3 bound 

successfully to the nickel resin, with very little in the flowthrough or wash fractions. 

HsPrx3 eluted consistently as a single peak at an imidazole concentration of 

approximately 250 mM (figure 4.2A).  

 

 

Figure 4.1: Sonication resulted in incomplete lysis 

Very little HsPrx3 was seen in the insoluble fraction when cells were lysed using the cell press. 

After sonication, a large amount of protein remained in the insoluble fraction, suggesting that 

complete lysis has not occurred, resulting in a significant decrease in the amount of protein in 

the soluble fraction. 
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A: IMAC elution    B: Gel filtration elution  
 

 

Figure 4.2: Representative purification chromatograms 

A: IMAC purification of HsPrx3 resulted in a single peak.  The dashed line represents the 10 

mM – 500 mM imidazole gradient used to elute the protein.  B: Typical chromatogram from gel 

filtration purification of HsPrx3. A major peak was seen around 60 mL, with a small shoulder 

indicating the presence of a higher molecular weight species. Stars indicate fractions analysed 

by SDS-PAGE (figure 4.3). 

 

 

A major band that migrated at 25 kDa was seen on SDS-PAGE analysis of fractions 

across the single peak recorded in the elution phase of IMAC (figures 4.2A and 4.3A). 

Further analysis by peptide sequencing (section 2.3.5) confirmed this band to be HsPrx3 

(appendix 5). Copurification of other E. coli proteins is common with IMAC (reviewed 

in Block et al., 2009, and HsPrx3 has been seen to interact with a large number of E. 

coli proteins (A. Betz, University of Otago, personal communication). Fractions that 

contained high levels of HsPrx3 (for example, lanes 4 and 5 of figure 4.3A) were 

therefore pooled and concentrated, and subjected to gel filtration. Protein was eluted 

using gel filtration buffer (section 2.1.8.2), and a single peak was typically observed at a 

retention volume of about 60 mL, with a small shoulder around 50 mL (figure 4.2B). 

Fractions collected across both peaks showed a single major band at 25 kDa on SDS-

PAGE (figure 4.3A). 

 

Fractions were collected from regions of the peaks indicated to contain over 0.5 mg/mL 

total protein concentration, using visual estimation by comparison to a band of pure 

protein at known concentration. The purity and specific concentration of HsPrx3 protein 
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was checked by SDS-PAGE. Fractions deemed to contain sufficient amounts of pure 

HsPrx3 (for example, lanes 11-14 figure 4.3A) were pooled and concentrated. The 

pooled sample was purified to homogeneity as judged by SDS-PAGE. When analysed 

at the concentration typically used for experiments (1 mg/mL), the absence of additional 

bands indicated that the amount of contaminating proteins was below 10 ng (the 

detection limit of colloidal Coomassie blue; Weiss et al., 2009), which was deemed 

acceptable (figure 4.3B). From a typical purification, the approximate yield was 60 % 

that of the protein loaded onto the gel filtration column.  

 
 
A: Typical gel of purification steps        B: Final sample purity  

    

Figure 4.3: SDS-PAGE gel of HsPrx3 purification 

A: A representative reducing SDS-PAGE gel of chromatography steps of HsPrx3 purification. 

HsPrx3 was identified as the 25 kDa band. Lanes 2 and 3: soluble and insoluble fractions after 

lysis and centrifugation; 4-7: fractions across the main peak of the IMAC chromatogram (figure 

4.2A); 8-9: fractions across the shoulder peak of the gel filtration chromatogram (figure 4.2B); 

10-15: fractions across the main peak of gel filtration. B: An SDS-PAGE gel of purified, his-

tagged HsPrx3 at 1 mg/mL.  
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4.2.3 His-tag removal by rTEV protease  

 

Consistent with reports from previous research (M. B. Hampton, University of Otago, 

personal communication), complete his-tag cleavage of tagged HsPrx3 was challenging, 

with multiple steps of cleavage and purification required. This could be due to the 

toroidal nature of Prxs, which perhaps accommodates the additional residues of the his-

tag and linker peptide in the centre of the ring, hindering access to the cleavage site. A 

number of cleavage conditions were trialled in an attempt to overcome this problem (see 

figure 4.4). The most successful conditions were seen to be overnight incubation with 

rTEV at 4°C, with the addition of <1 mM TCEP. rTEV protease is a member of the 3C 

cysteine proteases, which achieve proteolysis through nucleophilic attack of the 

substrate by the active site cysteine (reviewed in Malcolm, 1995). This residue must 

therefore be reduced to carry out the reaction, necessitating the addition of TCEP in the 

reaction buffer. 

 

All cleavage trials were carried out at a ratio of 1:100  rTEV:HsPrx3, as this was seen to 

be equally efficient as a ratio of 1:20. Control reactions of HsPrx3 alone were subjected 

to the same incubation times and temperatures to ensure that any decrease in molecular 

weight was due to his-tag cleavage rather than non-specific degradation. It was noticed 

that when left at 4°C overnight (and to a greater extent after incubation at 37°C) SDS 

resistant dimers appeared in the sample (indicated by a band migrating at a distance 

equivalent to the 50 kDa marker – figure 4.4). This has been reported by other groups, 

and has been opined to be due to strong non-covalent linkage between monomers (C. C. 

Winterbourn, personal communication). It has also been seen in mutants prone to 

hyperoxidation, due to the formation of persistent hydrophobic interactions (König et 

al., 2013). The appearance of these bands in samples that were subjected to high 

temperatures suggests that the protein may be becoming denatured and forming strong 

hydrophobic interactions as suggested by König et al. All samples were therefore flash 

frozen after purification in aliquots of 200 µL, thawed immediately prior to using and 

185



P a g e  | 164 

 

 

kept at 4°C during experiments where possible. Comparison of SEC/SLS traces of 

HsPrx3 from freshly prepared samples and those that had been flash frozen and thawed 

prior to analysis showed no differences (data not shown), indicating that freezing does 

not affect the protein. 

 

A: Cleavage trials       B: Final sample purity 

  

Figure 4.4: SDS-PAGE of his-tag cleavage trials 

A: A range of conditions were tested to optimise rTEV cleavage. The gel shows a representative 

group of conditions. B: Successful cleavage was found to require a 1:100 rTEV:protein ratio, 

with 21°C providing sufficient cleavage.  

 

 

4.3 Characterisation of wildtype HsPrx3 

 

4.3.1 Quaternary structure of HsPrx3 

 

The first part of this research aimed to build on existing literature (Wood et al., 2003, 

sections 1.2.5 and 1.2.5.1), elucidate the quaternary organisation of HsPrx3, and firmly 

characterise the factors that influence this. A number of techniques were used to analyse 
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HsPrx3 and obtain a detailed picture of the solution structure of the protein. Unless 

otherwise stated all data sets were collected at a protein concentration of 1 mg/mL. The 

native monomer of HsPrx3 has a molecular weight of 21.4 kDa (molecular weight 

calculated using the ExPasy online bioinformatics tool; Gasteiger et al., 2005) (see 

appendix 4). Recombinant expression in E. coli using a pET151 vector resulted in the 

production of HsPrx3 with an N-terminal affinity tag and a 26 residue linker peptide, 

with a weight of 25.2 kDa (see section 4.2.3). This leaves six additional residues even 

when the tag is cleaved, thus the predicted monomer weight is 22 kDa. Prxs generally 

exist as obligate dimers (Wood et al., 2003), therefore the smallest unit in solution was 

expected to be the 44 kDa dimer. 

 

While BtPrx3 provides a useful structural reference for HsPrx3, there has been some 

debate as to the precise nature of the bovine toroidal oligomer structure. Some results 

suggest that the protein exists as a decamer (Gourlay et al., 2003), while others suggest 

that it is dodecameric (Cao et al., 2005). The crystal structure of BtPrx3 shows an 

unusual concatenated arrangement of dodecameric toroids which may only be 

representative of a subpopulation of the species in solution (Cao et al., 2005; Karplus 

and Hall in Flohé and Harris, 2007). Therefore it was important to establish if HsPrx3 

dimers would associate in dodecameric or, analogous to all other human 2-cys Prxs, 

decameric toroids (Schrӧder et al., 2000; Cao et al., 2011), before further 

characterisation could be carried out.   

 

Size Exclusion Chromatography/Static Light Scattering  

HsPrx3 samples were initially analysed using SEC/SLS (section 2.5.6) to identify the 

size and distribution of species present in solution. Analysis of the quaternary structure 

of HsPrx3 in reducing buffer (section 2.1.8.2) indicated that HsPrx3 existed 

predominantly as one species (figure 4.5), represented by a large peak in the RI trace at 

around 12 mL. This peak was calculated (section 2.3.5.6) to represent a 249 kDa 

species, suggesting a dodecameric oligomer. The molecular weight was consistent 
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across the peak indicating a stable, monodisperse sample, with weight calculations not 

affected by the presence of other species.  

 

 

Figure 4.5: SEC/SLS of HsPrx3 in reducing conditions 

The RI trace of HsPrx3 showed a homogeneous solution, consisting of a large oligomeric 

species of around 250 kDa. Molecular weight as calculated from RI and light scattering by 

calibration to a BSA standard is indicated by the red line across the peak. 

 

 

Small angle X-ray scattering 

Data were collected from samples injected directly into a single, suspended capillary as 

this approach achieves the most constant possible background (H. D. T. Mertens, 

Australian Synchrotron, personal communication; information provided at  

www.synchrotron.com.au), and also allows analysis of samples at precisely known 

concentrations. 

  

In the reducing conditions, SAXS data supported SEC/SLS results. The average 

molecular weight of the solution was found to be 255 kDa (see table 4.2). The 

theoretical weight for a decameric oligomer is 214 kDa, and that of a dodecamer is 257 

kDa, therefore SAXS calculations were consistent with HsPrx3 forming a dodecamer in 

solution. RG calculated from both the Guinier region and GNOM program (Svergun et 

al., 1992) agree well, indicating good sample quality and no aggregation. Although 
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these values and Dmax calculated from the Porod volume are slightly larger than the 

theoretical values for a dodecameric oligomer (calculated from the crystal structure of 

BtPrx3 [Cao et al., 2005] using CRYSOL [Svergun et al., 1995; section 2.5.5.2]), this is 

likely due to 32 N-terminal residues that are not modelled in the crystal structure.  

 

Table 4.2: Molecular weights from SAXS studies of HsPrx3 

Experimental data were compared with theoretical values for a dimeric, decameric and 

dodecameric structure. Values for each concentration were calculated from three scattering 

images and averaged. Theoretical dimensions were generated using GNOM and the specified 

crystal structures, and molecular weight using the weight of HsPrx3. Experimental data agreed 

well with expected values calculated for a dodecameric species. The consistency in weight 

calculated across the range of concentrations tested indicated particle size of HsPrx3 is not 

concentration dependent in these conditions, as confirmed by superposition of scaled scattering 

curves (figure 4.6A). 

    

Dmax 

(Å) 

RG from 

Guinier 

(Å) 

RG from 

GNOM 

(Å) 

Volume 

(Å
3
) 

MW 

(kDa) 

HsPrx3 0.5 mg/mL 170 59 59 417000 254 

 1 mg/mL 178 59 59 417000 255 

 2 mg/mL 175 60 58 415000 256 

BtPrx3 dimer PDB ID: 1ZYE ~ 60 Theoretical RG: 20 49800 43 

214 BtPrx3 decamer PDB ID: 1QMV ~ 135 Theoretical RG: 47 393000 

BtPrx3 dodecamer PDB ID: 1ZYE ~ 155 Theoretical RG: 55 441000 257 

 

 

The scattering profile (figure 4.6A) showed an oscillating curve, indicative of a multi-

domain protein with a number of different inter- and intra-subunit distances (Mertens 

and Svergun, 2010). The P(r) plot showed an asymmetric curve (figure 4.6B). The 

presence of two maxima on this plot suggested well separated subunits, with the first 

peak representing intrasubunit distances (Svergun and Koch, 2003) and the second 

relating to intersubunit distances. Together, these data support that the dodecamer 

formed by HsPrx3 is a toroidal oligomer as seen for many other Prxs. Scattering profiles 

of reduced HsPrx3 were compared to theoretical profiles generated from crystal 

structures of a decameric (PDB accession number 1QMV, Schrӧder et al., 2000) and 

dodecameric (PDB accession number 1ZYE, Cao et al., 2005) Prx toroid. Reduced 
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HsPrx3 showed very good agreement with the theoretical scattering for a dodecameric 

toroid (figure 4.7A), but significant misalignment with that for a decameric toroid 

(figure 4.7B), suggesting that a decameric arrangement is not present in samples of 

HsPrx3. 

 

A: Experimental scattering curves   B: P(r) plot  

 

Figure 4.6: X-ray scattering data suggested a toroidal particle 

A: Scaled scattering curves of 0.5 mg/mL (light grey), 1 mg/mL (dark grey) and 2 mg/mL (black 

line) align well when overlaid, suggesting that within this range the oligomeric state is not 

sensitive to concentration. The multiple shoulders suggest a toroidal species. B: In reducing 

conditions the presence of two maxima on the P(r) plot indicate a multidomain particle (Mertens 

and Svergun, 2010). 

 
 
A: Comparison to a dodecamer     B: Comparison to a decamer 

    
Figure 4.7: Experimental scattering data and theoretical scattering profiles 

A: When fitted to theoretical scattering profiles (indicated with the red line) for a dodecameric 

Prx (PDB ID: 1QMV; Schrӧder et al., 2000), experimental scattering (blue diamonds) showed 

good agreement (Chi
2 

value 0.59). B: Comparison to that of a decameric Prx (PDB ID: 1ZYE; 

Cao et al., 2005) showed significant misalignment (Chi
2 
value 1.51) suggesting that this is not a 

likely arrangement of HsPrx3. 
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4.3.1.1 The 3D structure of the HsPrx3 toroid 

 

Reduced HsPrx3 was examined by TEM to unequivocally confirm the nature of the 

toroid. Initial trials to determine optimum sample concentration and conditions for TEM 

were carried out by recording images from samples prepared on copper mesh grids, 

overlaid with carbon coated Formvar®. These gave noisy images, with a high degree of 

background variation, and so for further studies copper mesh grids overlaid with 

continuous carbon were used. Samples were negatively stained with NanoVan solution 

(Nanoprobes
TM

) as this was found to give a more even stain than initial trials with 

uranyl acetate stain, potentially due to the smaller grain size of vanadate. NanoVan also 

offered the advantage of a near physiological pH (8.0), compared to that of acetate (pH 

4.0), which can be prone to artefacts (Hainfeld et al., 1994). Samples were adsorbed 

onto the grids from solution at a concentration of 0.01 mg/mL, using a method based on 

that of Radjainia et al., (2010). 

 

From initial inspection of electron micrographs, the presence of toroids in the negatively 

stained sample was immediately obvious (figure 4.8). The images were recorded on 

Kodak film, and these showed particles assuming random orientations, which allowed 

visualisation of this structure from a number of angles. In a number of individual 

particles, a hexagonal shape was easily discernible (see insets, figure 4.8A), supporting 

the dodecameric toroid. The fidelity of TEM images is often questioned, due to the 

possibility of interactions with the grid affecting the protein structure, or potentially 

selecting for a certain conformation and misrepresenting the populations present in the 

sample. In order to minimise these possibilities, and confirm that the grid does not 

influence HsPrx3 structure in TEM samples, images were also acquired using 

Quantifoil® “holey” grids prepared identically to the continuous carbon grids. As the 

protein in aqueous solution is deposited onto the grid it forms a film across the holes. 

The aqueous film spanning the holes is subsequently replaced by the stain, leaving the 

protein samples suspended in a thin film of stain (Harris, 2008). Micrographs of 

specimens prepared on holey grids showed toroids of the same dimensions to those seen 
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on continuous carbon grids (figure 4.8B). This confirmed that the support film on the 

grid was not affecting the sample. 

 
 
A: Continuous carbon grid                                      B: Holey grid 

      

Figure 4.8: Electron micrographs of HsPrx3 revealed hexagonal toroids 

A: Negatively stained HsPrx3 samples at 0.05 mg/mL showed the presence of toroids, with both 

top and side views visible. Hexagonal features were clearly discernible in the case of some 

particles (indicated by black boxes; inset shows enlarged views of these particles). B: Images of 

HsPrx3 stained across holes of Quantifoil® holey grids.  The prevalence of these structures in 

these preparations indicates that grid interactions or selection for certain conformations is not 

occurring on continuous carbon grids. 

 

 

7130 Particles of HsPrx3 were automatically selected from 12 micrographs, then 

aligned and averaged using reference-free class averaging of the EMAN v1.9 image 

processing suite (Ludtke et al., 1999). 100 reference-free class averages were generated 

by 9 rounds of iterative refinement (section 2.3.5.7.2; figure 4.9A). In these class 

averages, the hexagonal features seen in the micrographs were greatly enhanced, with 

individual dimers distinguishable in many cases. Class averages from micrographs 

recorded of samples on holey grids confirmed the hexameric arrangement. 
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A: Continuous carbon grid                  B: Holey grid 

  

Figure 4.9: Class averages confirm the hexameric oligomer 

A: 100 class averages were generated from 7130 particles, showing clear en face profiles as 

well as side views of rings. Six-fold symmetry is clear in a number of images. B: A selection of 

class averages produced from images recorded from holey grids is shown, revealing clear six-

fold symmetry and an absence of particles with alternative symmetries, indicating that grid 

interactions had not influenced HsPrx3 assembly or selected for the hexameric structures.  

 

 

Initial 3D models were built from raw images using the startcsym routine of EMAN 

v1.9 with C6 symmetry (section 2.3.5.7.2; Ludtke et al., 1999). These models were 

generated using a selected set of raw images, and were simultaneously refined by twelve 

iterative rounds of multi-model refinement in EMAN with imposed D6 symmetry. The 

resulting models were separately refined with imposed D6 symmetry using only the 

selected set of raw images that the process of multi-model refinement had associated 

with a given reference model. This resulted in a reconstruction which agrees well with 

X-ray crystal structure of BtPrx3 (figure 4.10; Cao et al., 2005), which was docked into 

the 3D reconstruction using UCSF Chimera (Pettersen et al., 2004). The resolution of 

the reconstruction was estimated to be 26 Å based on the FSC0.5 criterion, and shows 

density additional to that observed for the dodecameric Prx crystal structure, well placed 

to account for the 32 missing C-terminal residues from the crystal structure of the 

bovine analogue
 

(Cao et al., 2005). Measurement of the models using Chimera 

suggested the toroids have an external diameter of 16 nm and an internal diameter of 7 
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nm, which is consistent with the crystal structure of the dodecameric BtPrx3 (Cao et al., 

2005). 

 

 

 

Figure 4.10: 3D reconstructions from HsPrx3 TEM data show a dodecameric toroid 

A 26 Å 3D reconstruction was generated by single-particle analysis with imposed D6 

symmetry and contoured with a threshold of 5.5 (green) and 2 (transparent grey) sigma 

(left column). The model is consistent with the crystal structure of a dodecameric Prx 

(PDB ID: 1ZYE; Cao et al., 2005), as evidenced by a good fit upon docking with the 

crystal structure (which gave a density cross-correlation coefficient of 0.94; right 

column). Scale bar is 50 Å.  

 

 

The results described above confirm that the oligomer formed by HsPrx3 is in a 

dodecameric arrangement, resolving a discrepancy in the previous literature (Gourlay et 

al., 2003; Cao et al., 2005). TEM micrographs showed uniform toroidal particles; 

however, close inspection did reveal the presence of irregular toroids, some appearing 

slightly distorted, or with varying diameters. Exact quantification or measurement of 

these particles is difficult due to the potential for flattening of particles caused by 
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staining, therefore cryo-electron microscopy (cryo-EM) was carried out to provide 

insight into the possibility of toroids with differing dimension, without the influence of 

grid interactions and any stain-induced. Preliminary 3D models were generated from 

micrographs of frozen hydrated samples following the procedures described in 4.3.1.1. 

Grid preparation, recording of TEM images and initial processing of cryo-EM samples 

was carried out by Dr Mazdak Radjainia at the University of Auckland. The refinement 

resulted in two models with notably different conformations. Although these represent 

very coarse models, differences appearing to be a movement of the subunits and an 

increased inner diameter can be seen (figure 4.11). This would support the suggestion 

that HsPrx3 toroids may vary in their dimensions, which has been previously proposed 

(Harris, 1971; Hall et al., 2011), but until now no experimental evidence was available. 

Work is ongoing to confirm this initial finding. 

 

 

 
 
Figure 4.11: Cryo-EM supported the hypothesis of open and closed toroids 

The presence of toroids with different dimensions was suggested by cryo-EM 3D model 

reconstruction. Refinement resulted in two models. One was comparable with the reconstruction 

produced from negative stain EM (left), whilst the other (middle) appeared to represent and 

expanded toroid with an increased inner diameter. Exact measurements are difficult at this stage 

but these early models are a promising start to confirming the presence of distinct toroidal 

conformations. Docking the models (right) clearly shows the difference in toroid internal 

diameter.  
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4.3.1.2 Influence of redox state on quaternary structure 

 

Redox conditions are the most well-reported environmental factor to affect Prx 

assembly (reviewed in Barranco-Medina et al., 2009). The presence of an 

intermolecular disulfide bond destabilises the oligomer interface (see section 1.2.5.3), 

therefore the formation or reduction of this bond influences the propensity of assembly. 

Being a typical 2-Cys Prx, HsPrx3 has been assumed to exist in an equilibrium which 

shifts to favour a dimeric species in oxidising conditions, and the larger oligomer in 

reducing conditions (Cox et al., 2010). 

 

Size Exclusion Chromatography/Static Light Scattering 

SEC/SLS data were collected under non-reducing conditions (figure 4.12A). In these 

conditions the elution profile of HsPrx3 was significantly shifted compared to that 

previously collected in reducing conditions (figure 4.12B; section 4.3.1.1), with one 

major peak indicating that HsPrx3 exists almost completely as a single, small species. 

This peak was calculated to represent a 42 kDa particle, consistent with the predicted 

dimer. A small shoulder was seen, suggesting that there may be some larger particles 

present, with calculations resulting in a weight of around 100 kDa. This suggests a 

tetramer, which has not previously been reported for HsPrx3. 

 

Small Angle X-ray Scattering 

In non-reducing conditions, the SAXS data were significantly different to the reduced 

sample, consistent with the change seen in SEC/SLS results. The scattering profile 

showed a smoother curve, suggesting a more elongated particle (figure 4.13). The 

slower rate of decrease of scattering intensity seen at low q values suggests a smaller 

average RG. (Svergun and Koch, 2003; appendix one). Molecular weight calculations 

were not conclusive, with particle size showing a concentration dependence which was 

not seen in reducing conditions (table 4.3).  
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A: Non-reducing conditions       B: Reducing conditions 

 
Figure 4.12: Redox conditions significantly affect the oligomeric state of HsPrx3 

A: HsPrx3 in non-reducing conditions elutes primarily as a single species, with a molecular 

weight consistent with a dimer. The peak shows a slight shoulder indicating the presence of a 

small amount of larger species ~100 kDa. B: Under reducing conditions HsPrx3 exists as a large 

assembly, calculated to be 249 kDa. A slight deviation from the baseline is seen around 17 mL, 

possibly suggesting very small amounts of free dimer may remain in solution. Red lines show 

molecular weights across the peaks. 

 

A: Scattering curve    B: P(r) plot  

 
Figure 4.13: X-ray scattering profiles indicate different structures in response to redox 

changes 

The scattering profile of non-reduced HsPrx3 at 1 mg/mL shows a gradual fall in scattering 

intensity, suggesting an average smaller particle than the reduced sample. B: The shifted P(r) 

plot to favour lower r values indicates that small species dominate, although the second 

maximum reveals larger assemblies are still present. 
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Table 4.3: The oligomeric state of non-reduced HsPrx3 is sensitive to concentration 

Calculated weights suggest that non-reduced HsPrx3 exists in equilibrium between the 

dodecameric and dimeric species, favouring the dimer. The proportion of species is concentration 

dependent. 

    

Dmax 

(Å) 

RG from 

Guinier 

(Å) 

RG from 

GNOM 

(Å) 

Volume 

(Å
3
) 

MW  

(kDa) 

Reduced  0.5 mg/mL 170 59 59 417000 254 

             HsPrx3 1 mg/mL 178 59 59 417000 255 

 2 mg/mL 175 60 58 415000 256 

Non-reduced 0.5 mg/mL 165 54 51 146000 89 

             HsPrx3 1 mg/mL 179 56 56 179000 108 

 2 mg/mL 176 57 57 210000 127 

Dimer PDB ID: 1ZYE ~ 60 Theoretical RG: 20 49800 43 

214 Decamer PDB ID: 1QMV ~ 135 Theoretical RG: 47 393000 

Dodecamer PDB ID: 1ZYE ~ 155 Theoretical RG: 55 441000 257 

 

 

This is in line with previous groups findings on other members of the Prx family, 

suggesting the non-reduced state to be heterogeneous and concentration dependent 

(Wood et al., 2002). The dimeric species seen in SEC/SLS was not able to be 

distinguished, with scattering data at the lowest concentration (0.5 mg/mL) yielding a 

molecular weight of 89 kDa. The P(r) plot showed two maxima at the same positions as 

the reduced sample, but skewed toward lower r values (figure 4.13B). This indicates 

that some oligomers were present, but made up a smaller proportion of the population. 

As SAXS data yield a solution average (Mertens and Svergun, 2010), this value is likely 

due to the presence of multiple species in solution, thus agreeing with the SEC/SLS data 

(figure 4.12A). 

 

The SAXS data confirm that HsPrx3 quaternary structure changes dramatically in 

response to redox conditions. Together with SEC/SLS these results show that HsPrx3 

exists in a dynamic equilibrium between a dodecamer, a tetramer, and a dimer; 

particular conditions favouring one state without eliminating the others. Consistent with 

198



P a g e  | 177 

 

 

the literature on other Prxs (reviewed in Wood et al., 2003; Barranco-Medini et al., 

2009; Schrӧder et al., 2000), the oligomer was favoured in reducing conditions, and the 

equilibrium shifted to favour the dimeric species when reducing agents are present. The 

appearance of a 100 kDa species suggesting the presence of a tetramer has not 

previously been seen in the case of HsPrx3. This could give insight into the assembly 

mechanism of the dodecamer, possibly indicating a modular mechanism whereby 

dimers firstly assemble into tetramers, which then associate further to form the toroid. 

Very recently the presence of a tetramer was noted in mutated constructs of an A. 

thaliana 2-Cys Prx (PrxA; König et al., 2013). Two muteins were reported to form this 

intermediate, which was explained to occur through an increased predisposition to 

hyperoxidation. The tetramer of non-reduced HsPrx3 preparations may therefore 

represent associated hyperoxidation-sensitive dimers, which are not seen once the 

protein is reduced.  

 

4.3.1.3 Influence of the N-terminal his-tag on quaternary structure 

 

The use of a his-tag for purification is often considered to have no effect on protein 

structure (Chant et al., 2005), due to its small size and lack of charge (Li et al., 2010; 

the pKa of histidine is 6.0 [Dawson et al., 1969], which means that at physiological pH 

it is mostly deprotonated and uncharged). However, it has been shown that the use of a 

his-tag can in some cases influence protein structure or activity (Carson et al., 2007). In 

the case of Prxs it can have a dramatic effect on their quaternary structure, seemingly 

stabilising the toroidal oligomer (Cao et al., 2007; chapter three). Care must be taken 

when comparing previous data, such as the apparent conflicting results regarding the 

link between ionic strength and Prx assembly – one group investigating this relationship 

in Helicobacter pylori AhpC found that high ionic strength stabilised the decamer 

(Papinutto et al., 2005), while another group found it encouraged dissociation of the M. 

tuberculosis homologue. (Chauhan and Mande, 2001). It is possible that slight 

differences in sequence may cause this discrepancy, but it should be noted that one 
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group (Papinutto et al., 2005) studied the native form of the protein, while Chauhan and 

Mande used a his-tagged variant.  

 

Size Exclusion Chromatography/Static Light Scattering  

When his-tag cleavage was not carried out, non-reduced HsPrx3 existed almost 

exclusively as a dodecameric species (figure 4.14A). As well as the strong shift toward 

the dodecameric species, a small shoulder is seen indicating a HMW species (figure 

4.14A). This peak was calculated to represent a ~470 kDa particle. This does not agree 

with theoretical weights for more than one associated dodecamer. Calculations yield an 

average of the species eluting at that point, and the varying weight across this peak 

indicates that a mixture of species is present in rapid equilibrium, therefore, the number 

of single dodecamers is fluctuating.  

 

A: Non-reducing conditions        B: Reducing conditions 

     

Figure 4.14: An N-terminal his-tag stabilises the dodecameric oligomer of HsPrx3 

A: In non-reducing conditions, his-tagged HsPrx3 exists almost completely as a 291 kDa 

species, consistent with a tagged dodecamer (302 kDa). A small peak indicative of a ~470 kDa 

species is present. B: In reducing conditions the HMW species is not present, with the protein 

existing as a dodecamer. Although calculated to represent equivalent sized species, the elution 

volume of the dodecamer peaks are shifted slightly. This could be due to the compaction of the 

toroid in reducing conditions (further discussed in section 4.4). 
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In reducing conditions, the peak representing the HMW is not seen, and the RI trace is 

similar to that of reduced, untagged HsPrx3 in these conditions. Although the single 

peak seen in the reduced sample, and the main peak of the non-reduced sample were 

both calculated to represent a dodecameric species, the elution volume was slightly 

shifted. This could be due to the compaction of the toroid in reducing conditions 

(further discussed in section 4.4); a theory which is supported by comparing the 

calculated Rh, which suggested particle diameters of 10 nm and 13 nm for the reduced 

and non-reducing samples respectively. Although this does not agree well with the 

expected diameter of a dodecamer (15 nm), this presented an interesting possibility 

which would benefit from further examination. 

 

Small Angle X-ray Scattering 

Under both reducing and non-reducing conditions, scattering profiles of tagged HsPrx3 

exhibited very similar traces (figure 4.15A), consistent with the toroid seen in untagged 

samples, indicated by the oscillating scattering profile (Mertens and Svergun, 2010). In 

non-reducing conditions, molecular weight was ~330 kDa, consistent with the dominant 

species being the dodecameric oligomer. This did not appear to be concentration 

dependent within the range tested, as indicated by molecular weight calculations and 

superposition of scaled scattering curves (table 4.4; figure 4.15B). Although the 

presence of the ~470 kDa species observed in the SEC/SLS experiments was not seen in 

the SAXS data, the molecular weight calculations were slightly higher than that 

expected for a tagged dodecamer (302 kDa) consistent with the presence of small 

amounts of larger species. To address this issue, SAXS data were also collected from 

his-tagged samples run through an in-line FPLC column, to separate any larger species 

(section 2.3.5.7). Calculations carried out on scattering data collected at the apex of the 

gel filtration peak gave a molecular weight of 297 kDa, confirming that the previous 

calculations were indeed influenced by the presence of larger assemblies. These 

assemblies were not seen as discrete species through analysis of scattering data, which 
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is to be expected as SEC/SLS indicated that at 1 mg/mL these species represented less 

than 1% of the total population (section 4.3.1.5).  

 

In line with SEC/SLS data, when tagged HsPrx3 was analysed in reducing conditions 

the amount of HMW species decreased, indicated by the lower average molecular 

weight (table 4.4). Together these results demonstrate that the presence of an N-terminal 

his-tag strongly influences the quaternary structure of HsPrx3, in line with the results of 

Cao et al., (2007). As the scattering profile and molecular weight are consistent with the 

dominant species being the dodecameric toroid, this suggests that the his-tag stabilises a 

native arrangement, rather than causing random aggregation. Although there is a clear 

stabilising effect on the dodecamer, the redox state of CP still contributes to the 

assembly of HMW species, highlighting the importance of this residue in HsPrx3 

quaternary structure. 

 

A: Altered redox conditions                  B: Altered protein concentration 

 
Figure 4.15: Scattering data for his-tagged HsPrx3 appears unchanged by redox conditions 

A: In non-reducing conditions (black line) the scattering profile suggests a multi-domain 

particle. In reducing conditions (blue line) the scattering profile is largely unchanged, indicating 

that the toroidal structure is the predominant species in both conditions. B: Overlaid scaled 

scattering curves generated from data collected at (light grey line) 0.5 mg/mL, (dark grey line) 1 

mg/mL, and (black line) 2 mg/mL showed that the oligomeric state was not concentration 

dependent within this range.  
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Table 4.4: Molecular weights and dimensions from SAXS show tagged HsPrx3 is a 

constitutive dodecamer 

In reducing conditions molecular weight calculations of HsPrx3 suggest a dodecameric species 

which is not concentration dependent. In non-reducing conditions tagged HsPrx3 shows a shift 

in weight. Comparison with SEC/SLS results suggest this is due to the presence of small 

amounts of larger species. 

    

Dmax 

(Å) 

RG from 

Guinier 

(Å) 

RG from 

GNOM 

(Å) 

Volume 

(Å
3
) 

MW 

(kDa) 

Reduced  0.5 mg/mL 179 57 57 485000 301 

       His6-HsPrx3 1 mg/mL 192 57 56 502000 311 

 2 mg/mL 181 56 56 487000 302  

Non-reduced 0.5 mg/mL 202 59 60 552000 321 

        His6-HsPrx3 1 mg/mL 206 60 60 526000 323  

 2 mg/mL 203 59 60 534000 326  

Tagged dimer PDB ID: 1ZYE 60 Theoretical RG: 20 49800 50 

Tagged decamer PDB ID: 1QMV 136 Theoretical RG: 47 393000 252 

Tagged 

dodecamer PDB ID: 1ZYE 
154 Theoretical RG: 55 441000 

302 

 

 

It was considered that the stabilisation of the dodecamer may be due to the his-tags 

binding to metal ions after IMAC purification. To further investigate the nature of this 

stabilisation, his-tagged samples were analysed after chelation of metal ions by dialysis 

into running buffer with the addition of 2 mM EDTA (section 2.1.8.2). Subsequently, 

the buffer was exchanged for standard running buffer to remove EDTA. In these 

conditions his-tagged HsPrx3 existed almost completely as a dimeric species (figure 

4.16A). When this sample was subjected to reducing conditions, the shift to favour the 

dodecameric species was not seen, indicating that the construct is not sensitive to redox 

conditions (figure 4.16B). A small peak around the elution volume of the untagged 

tetramer was seen, however the molecular weight calculations for this peak were noisy 

and inconclusive. When untagged HsPrx3 is transferred to an EDTA containing buffer, 

normal behaviour is seen (data not shown). 
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A: Non-reducing conditions           B: Reducing conditions  

 
Figure 4.16: EDTA caused the dissociation of his-tagged toroids 

A: His-tagged HsPrx3 ran as a dimeric species when analysed in standard running buffer, after 

chelation of metal ions. Molecular weight calculations suggested a 52 kDa species, consistent 

with a dimer. B: After chelation of metal ions, the his-tagged construct was insensitive to redox 

conditions, remaining dimeric in reducing conditions. 

 

 

As histidine residues are thought to associate to nickel ions in a 1:6 ratio (Valenti et al., 

2006), therefore, one nickel ion per hexa-histidine tag, it was considered that addition of 

equimolar Ni2Cl to previously chelated his-tagged HsPrx3 could switch the protein to a 

dodecameric state. However, direct addition of nickel into the sample caused localised 

aggregation, and the use of dialysis made it difficult to control the total ion 

concentration HsPrx3 was exposed to. Initial results using dialysis showed a shift 

toward HMW species, but these were very heterogeneous and prone to aggregation. 

Although further optimisation would be required to find conditions in which assembly 

of the dodecamer can be activated without the formation of larger assemblies, these 

results are a promising start towards controllable, triggered assembly of HsPrx3 

subunits. The possibility of controlling HsPrx3 subunit assembly is further explored in 

chapters five and six. 
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4.3.1.4 Influence of solution pH on quaternary structure  

 

HsPrx3 is a mitochondrial enzyme – an environment in which many processes, 

including membrane transport and ATP synthesis, are suggested to be controlled by 

changes in matrix pH (Akhmedov et al., 2010; Palmieri., 2004). Given this 

environment, and its involvement in cellular processes such as apoptosis which involve 

pH changes (Chang et al., 2004), the effects of solution pH on HsPrx3 assembly were 

investigated. The mitochondrial matrix is estimated to be pH 7.8 (Porcelli et al., 2005). 

During apoptosis the matrix is acidified to around 7.3 (Lagadic-Gossman et al., 2004; 

Takahashi et al., 2004). Therefore, solutions with pH levels around these values were 

investigated to study changes in oligomeric structure that may be physiologically 

relevant. Extreme pH changes were found to lead to interesting, possibly non-native 

arrangements, and are described in chapter six. 

 

When the untagged sample was dialysed into a neutral pH buffer (pH 7.0), the 

quaternary structure of HsPrx3 assembly was markedly changed. In non-reducing 

conditions a major peak indicating a dodecameric species was seen (figure 4.17A). A 

small peak suggesting the presence of some tetrameric species was observed, although 

no dimeric species were present. The broad nature of this peak, and calculations 

resulting in a weight of 277 kDa, suggested that some larger assemblies of dodecamers 

were present, but were rapidly forming and dissociating and therefore not resolved. At 

pH 7.5 the size of the tetramer peak increased, accounting for a significant portion of 

the population (figure 4.17B). The dodecamer still predominates, with no indication of 

HMW species seen in the RI trace. 
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Figure 4.17: pH changes significantly affect HsPrx3 oligomerisation 

Traces recorded at A: pH 7.0; B: pH 7.5; C: pH 8.0; D: pH 9.0. In non-reducing conditions, 

high pH (9.0) favours dissociation of the dodecamer, whereas low pH (7.0) stabilises the 

dodecamer, with no redox sensitivity seen at either pH. Red lines show molecular weights 

across the peaks.  
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At higher pH (pH 9.0) in non-reducing conditions, one major peak was observed, 

representing a 45 kDa species, with no indication of the presence of dodecameric 

species (figure 4.17D). The peak showed some differences to the dimer peak seen at pH 

8.0 – specifically, a broadening to shift the peak toward later elution volumes, possibly 

due to dissociation of the dimers occurring. Some 1-Cys Prxs have been seen to be 

stable in alkaline conditions (Wen et al., 2007), however this has not been tested in the 

case of dimeric Prxs; these results suggest that high pH may disrupt the usually stable 

B-type dimer interface. A small peak representing a ~100 kDa species was also seen, 

although this was less prominent than that at pH 8.0. Further analysis as smaller pH 

intervals would be useful to investigate the point at which the equilibrium shifts. 

 

4.3.1.5 Influence of protein concentration on quaternary structure 

 

In the case of Prxs, it has been seen that in oxidising conditions oligomer formation is 

sensitive to concentration, with this factor being able to override the redox response and 

force self-assembly to occur (Wood et al., 2002), and may have influenced some of the 

conformations seen in crystal structures. For example, mutated Prxs generated by 

Parsonage et al., (2005) were seen to form decameric arrangements in the crystal 

structure, but remained dimeric up to concentrations of 480 µM in solution. Similarly, 

the octamer of MtAhpE seen in the crystal structure has been opined to be an artefact of 

high concentration (Karplus and Hall, in Flohé and Harris., 2007). The influence of this 

factor was therefore determined in the case of the solution state of HsPrx3, through 

examining the effect of varying protein concentration on the dimer-dodecamer 

equilibrium of HsPrx3 in non-reducing conditions. Following the observation that 

HsPrx3 dodecamers may be able to associate further to HMW species (section 4.3.1.3) 

the stabilised, his-tagged dodecamers were also investigated at high concentrations.  
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Size Exclusion Chromatography/Static Light Scattering 

SEC/SLS was used to investigate the effect of concentration on HsPrx3 assembly, as 

other solution techniques cannot be used at high concentrations. SAXS data was 

collected at a range of concentrations from 0.5 – 2 mg/mL, beyond these concentrations 

data collection was not possible due to protein burning onto the capillary. Within this 

range the oligomeric state of both tagged and untagged HsPrx3 did not appear to be 

sensitive to concentration in reducing conditions. Untagged HsPrx3 showed some 

change in oligomeric state within this range when conditions were non-reducing 

(section 4.3.1.2; table 4.3). Therefore, this was the first state to be studied at higher 

concentrations. SEC/SLS experiments were carried out using protein concentrations of 

up to 5 mg/mL. At increasing protein concentrations the relative size of the peak 

representing the tetramer increased, and at 5 mg/mL a small peak corresponding to the 

dodecamer was seen (figure 4.18A).  

 

To investigate the possibility to drive the formation of HMW species in high protein 

concentrations, SEC/SLS was carried out using samples of his-tagged HsPrx3 at 

concentrations up to 5 mg/mL. At increased concentrations the size of the peak 

pertaining to these HMW structures did increase (figure 4.18B), as did the calculated 

molecular weight. At 5 mg/mL calculations suggested a 726 kDa species (compared to 

470 kDa calculated from 1 mg/mL (section 4.3.1.3; figure 4.14A), indicating that at this 

concentration larger associations of dodecamers were forming. The molecular weight 

across the peak was noisy, likely due to the low signal, meaning that although molecular 

weight calculations can be taken as an indication, firm conclusions of oligomer size 

cannot be drawn. 
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A: Untagged HsPrx3          B: Tagged HsPrx3 

 

Figure 4.18: Oligomeric state of non-reduced HsPrx3 shows concentration dependence 

 A: Untagged HsPrx3 exists mainly as a dimer at 1 mg/mL (light grey). At increasing protein 

concentrations (2 mg/mL – dark grey), the appearance of a ~100 kDa species is seen. At the 

highest concentration studied (5 mg/mL – black) a small amount of dodecameric oligomer is 

seen. B: His-tagged HsPrx3 exists primarily as a dodecamer, with small amounts of HMW 

species seen as the concentration increases. Molecular weight across the peak (red line) is not 

constant, suggesting these species are rapidly forming and dissociating. 

 

 

Table 4.5: Relative proportions of oligomeric species in non-reducing conditions at various 

concentrations 

Numbers indicate percentage of total population, as judged by RI peak areas. Untagged HsPrx3 

favours the dimer in non-reducing conditions, with the dodecamer seen as a discrete species at 

high concentration (5 mg/mL). Tagged protein exists primarily as a dodecamer, the appearance 

of a HMW species not seen in untagged samples is noted above 1 mg/mL. Samples were run in 

triplicate, errors indicate the variation. 

Sample Concentration HMW species Dodecamer Dimer 

His-tagged 0.5 mg/mL  89 ±1 11 ±1 

 1 mg/mL 1 ±1 92 ±2  7 ±3 

 5 mg/mL 1 ±1 96 ±1  3 ±2 

Untagged 0.5 mg/mL  4 ±2 96 ±2 

 1 mg/mL  10±3 90±3 

 5 mg/mL 3±1  9±1 88±2 
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4.3.2 Peroxidase activity of HsPrx3 

 

The relative activity of HsPrx3 and variants was determined through a competitive 

assay using a method developed by Dr Alexander Peskin (University of Otago, 

Christchurch), based on that of Ogusucu et al. (2007). The protocol was optimised in 

house for HsPrx3 analysis by N. Amy Yewdall (Yewdall, 2013, unpublished data). The 

assay relies on the peroxidase activity of horse radish peroxidase (HRP), which breaks 

down H2O2 at a rate of 1.78 x 10
7 

M
-1

 s
-1

 (Dolman et al., 1975) – a comparable rate to 

that of the Prxs, which are generally in the order of 10
7 

M
-1

 s
-1

 (Poole, in Flohé et al., 

2007). HRP contains a haem cofactor in the active site, which absorbs at 403 nm. 

Catalysis leads to the production of Compound I due to oxidation of haem, with a 

concomitant decrease in absorbance at 403 nm (Dunford, 1999). This decrease is 

inhibited by the addition of Prx, as it competes with HRP to react with H2O2. The 

inhibition of the decrease in absorbance at 403 nm can be used to calculate the apparent 

second-order rate constant of the Prx (section 2.6.1; Ogusucu et al., 2007). Prx rate 

constants determined from this assay have been seen to agree with those obtained from 

pseudo-first order approach (Nelson et al., 2008). Therefore, the values can be 

considered an accurate representation of the protein’s activity. Although a direct rate is 

not measured, the assay can be used to give valuable information about the relative 

activities of HsPrx3 variants. As the assay was carried out at concentrations of 

~0.2mg/mL, the activity cannot be directly related to the quaternary structure, as 

structural analysis was not carried out as this concentration. However, the relative 

activity can be compared to the observed shift in oligomeric equilibrium, giving an 

indication of how an increased propensity for assembly or disassembly affects protein 

activity. 

 

The activity of pure samples of HsPrx3 was assayed, with and without the his-tag. The 

untagged protein was found to react with H2O2 at a rate of 1.6 x 10
7
 M

-1
 s

-1
. This is in 

line with other groups’ results, who suggest HsPrx3 reacts with a rate of 2 x 10
7
 M

-1
 s

-1
.
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When the his-tag was attached the relative activity was significantly reduced, reacting at 

a rate of 4.6 x 10
6
 M

-1
 s

-1
.  This is just over a two-fold decrease in activity – in line with 

results obtained for BtPrx3, which suggested a three-fold decrease in activity when the 

his-tag was attached (Cao et al., 2007). 

 

A: Untagged HsPrx3 

      
 
B: Tagged HsPrx3 

      
 

Figure 4.19: Tagged HsPrx3 showed lower activity than the untagged construct 

A: The untagged construct reacted with a relative activity of 1.6 x 10
7
 M

-1
 s

-1
. B: The tagged 

construct reacted at 4.6 x 10
6
 M

-1
 s

-1
. Bar graphs show the formation of Compound I in the 

presence of the specified HsPrx3 concentrations. 
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4.3.3 Crystallisation  

 

Solving the crystal structure would enable comparison of the arrangement of the 

subunits within the toroid, establishing whether the his-tags are simply coordinating to 

the metal ions, or inducing a conformational change which may encourage dimer-dimer 

interactions to occur. To investigate the nature of the stabilising effect of the his-tag, 

reduced, cleaved HsPrx3 and non-reduced his-tagged protein were subjected to 

crystallisation trials. 

 

Previous groups had been unsuccessful in their efforts to crystallise the wildtype Bovine 

Prx3, obtaining only microcrystals (Cao et al., 2005). Similarly, crystallisation 

screening of HsPrx3 did not provide crystals suitable for diffraction. Promising results 

were achieved in the initial screen, with crystalline precipitation seen and crystals 

forming in three conditions (figure 4.20). Where crystals were seen, the morphology 

was exclusively clusters of needles, and appeared to favour PEG based conditions, 

growing in around 7 days (table 4.6).  Fine screens were set out around all conditions in 

which crystals were seen for both tagged and untagged HsPrx3 (section 2.5.6.1). The 

needle-like crystals seen in the initial screens were not reproducible in the hanging drop 

vapour diffusion method (section 2.5.6.2); and so crystallisation efforts are ongoing. 
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A     B      C       D 

 
 

Figure 4.20: Needle-like crystals of HsPrx3 were seen in initial screens 

A: Clusters of needles were seen in his-tagged HsPrx3 screens. B, C, D: Untagged HsPrx3 

yielded small needles, spherulites and clusters of needles. Details of crystallisation conditions 

are given in table 4.6 below. 

 

 

Table 4.6: Positive crystallisation conditions 

His-tagged and untagged HsPrx3 formed needle-like crystals in PEG-based and alcohol screens. 

The alcohol mix used in the Morpheus screen was composed of: 0.2 M 1,6-hexanediol, 0.2 M 1-

butanol, 0.2 M (RS)-1,2-propanediol, 0.2 M 2-propanol, 0.2 M 1,4-butanediol, 0.2 M 1,3-

propanediol. Samples are lettered corresponding to figure 4.13. 

Sample Conditions Observations 

A (His-tagged 

HsPrx3) 

20% w/v PEG 1500, 0.15 M KSCN,    

0.1 M Tris, pH 7.5 

Needles 

B (Untagged 

HsPrx3) 

20% 2 methyl 2,4 pentanediol, 0.1 M 

AMP/HCL, pH 9.7 

Small clusters of needles 

C (Untagged 

HsPrx3) 

10% w/v PEG 4000, 20% v/v glycerol, 

0.02 M alcohol mix, 0.1 M 

MES/imidazole, pH 6.5 

Spherulites and small 

needles 

D (Untagged 

HsPrx3) 

10 % w/v PEG 8000, 20% v/v ethylene 

glycol, 0.02 M alcohol mix, 0.1 M 

bicine/Trizma base pH 8.5 

Fine separate needles 
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4.4 Discussion 

 

Within the 2-cys Prxs, the structural differences between a decameric and dodecameric 

Prx are often surprisingly minor (figure 4.21), suggesting that the size of the oligomer is 

finely tuned and governed by subtle sequence modifications. The information presented 

here reveals the factors controlling the oligomeric state of HsPrx3, providing a firm base 

to unravel the mechanisms that control self-assembly, and potentially design higher 

order structures. 

 

Figure 4.21: Structural comparison of a decameric and dodecameric Prx 

The tertiary structure of a Prx that forms a decamer (grey; human erythrocytic thioredoxin 

peroxidase B [Schrӧder et al., 2000], PDB ID: 1QMV) overlays well with that of one which 

forms a dodecamer (blue; bovine mitochondrial Prx3 [Cao et al., 2005], PDB ID: 1ZYE). 

Structural variations are minor despite low sequence identity (65%), with some small 

differences being seen in loop regions that would be expected from intrinsic flexibility, and so 

provide few clues as to the factors determining oligomer size. 
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4.4.1 HsPrx3 quaternary structure 

 

The results of this study unequivocally demonstrate that the toroid of HsPrx3 is a 

dodecamer. This is an unusual arrangement; only two other Prxs have been seen to 

adopt this conformation (Guimarães et al., 2005; Cao et al., 2005), both of which 

contain cysteine mutations. The functional implications of the differing multimeric 

states of Prxs are unclear. It has been suggested that large assemblies of toroids act as 

molecular chaperones, which may mean the size of the oligomer may be tuned to 

accommodate various substrates. This hypothesis is somewhat supported by the 

observation that the only other eukaryotic Prx seen to assume a dodecameric 

arrangement is also mitochondrial (Cao et al., 2005). Control of the multimeric state of 

Prxs has been suggested to rely on minor shifts at the B-type interface (Gretes and 

Karplus, 2013). An interesting experiment to test this hypothesis would be to introduce 

mutations at the B-type interface and assess the multimeric state of new muteins. 

 

The Prx toroid has been seen to be the dominant species when the subunits are reduced, 

but also when the protein is hyperoxidised (Schrӧder et al., 2000; reviewed in Wood et 

al., 2003). These states have been reported to be toroids with different conformations 

(Muthuramalingam et al., 2009), with the reduced and hyperoxidised subunits forming 

tight and loose toroids respectively (Hall et al., 2011). Despite these suggestions, there 

remains little insight into the existence of these conformations, with no structural data 

available relating to the possible variations in the toroids. During the course of this 

thesis, a report was published in which a mutation was introduced to the sequence of a 

decameric plant 2-Cys Prx (substitution of CP with aspartic acid) to mimic the 

hyperoxidised state (König et al., 2013), and stabilise the toroid. The solution studies 

detailed by the authors provided hint toward the existence of the two toroid 

conformations suggested by Muthuramalingam. This could explain the varying 

dimensions and presence of distorted toroids noted in HsPrx3 samples (section 4.3.1.1).  
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The models produced in this work represent the first direct evidence to support their 

existence, and suggest that this conformational flexibility may be present in all Prxs, 

whether decameric or dodecameric. Although these are preliminary models and 

pronounced features are not discernible, they are a promising start to unravelling the 

conformational changes involved, and ongoing work is being carried out to further 

characterise these species. The concept that these two conformations correspond to 

reduced and hyperoxidised protein also suggests that hyperoxidation of protein may be 

occurring during the experiment. Although H2O2 was not present in experimental 

solutions, hyperoxidation has been seen to occur during purification by other groups, 

even when reductant was present, and could therefore be occurring in this case (Low, et 

al., 2007). Further work is needed to clarify this; one approach could be the use of 

antibodies to identify the hyperoxidised form and enable further characterisation. 

 

4.4.2 His-tag stabilisation occurs through the coordination of metal ions 

 

His-tags have been seen to influence oligomerisation of some proteins, with the exact 

mechanism remaining unknown (Carson et al., 2007; Chant et al., 2005; Cao et al., 

2005). The loss of toroid stabilisation upon the addition of EDTA in the case of HsPrx3 

revealed that the effect was brought about through the association of the his-tags with 

metal ions. This provides a useful approach to controlling the quaternary structure of 

HsPrx3.  Purified protein, once stripped of metal ions, will remain dimeric regardless of 

redox state. Reintroduction of these metal ions triggers the assembly of the dodecameric 

species, which are stable, also regardless of redox conditions. The presence of metal 

ions can be controlled through their addition or removal of chelating agents, thereby 

effectively switching the quaternary structure.   

 

The his-tag appears to stabilise the native dodecamer, however, the nature of this 

stabilisation is not known. It is plausible that the his-tags coordinate to metal ions within 
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the lumen of the toroid. However, it is clear that the presence of the tag has a larger 

influence on HsPrx3 tertiary structure, as the dimers are unable to assemble once the 

metal ions are removed. This is in line with the observations of the effect of the his-tag 

on MtAhpE (chapter three). Comparison of tagged and untagged crystal structures 

would provide insight into this, and ongoing research in the Gerrard laboratory will seek 

to gain further information on the nature of this interaction. These results highlight an 

important consideration for structural research as the his-tag is generally not thought to 

influence protein structure. However, in the case of the Prxs it has a significant impact 

on the quaternary structure. Care should also be taken when comparing published 

studies, as conflicting results regarding oligomerisation may be due to the presence or 

absence of the his-tag (one example is detailed in section 4.3.1.3). 

 

4.4.3 HsPrx3 dodecamer assembly is controlled by a number of factors 

 

This work presents a thorough picture of HsPrx3 oligomerisation and the factors that 

influence the process, summarised in figure 4.22. An interesting observation was the 

appearance in many conditions of what appeared to be a tetrameric assembly 

intermediate. Although this has not been previously recorded for Prxs from higher 

species, a ~100 kDa assembly has been seen in cross-linking experiments (Gourlay et 

al., 2003). A step-wise mechanism for oligomer formation is hereby proposed, whereby 

dimers first associate into tetramers, which further associate to result in the dodecameric 

toroid.  

 

Results indicate that this self-assembly is primarily controlled by redox conditions, 

confirming the relationship between catalysis and the oligomeric state of HsPrx3. 

However, other factors can override this regulation, suggesting that the control of 

HsPrx3 quaternary structure may be more complicated than currently thought, and 

formation of oligomeric structures may have discrete functions beyond the typical Prx 

peroxidase activity. 
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Figure 4.22: Formation of the Prx toroid is dependent on a number of factors and may 

involve an oligomerisation intermediate 

This work found the dimer to be the predominant species in oxidising conditions, high pH, and 

when protein concentration was low. The presence of a tetrameric species is indicative of an 

oligomerisation intermediate, and it suggested here that the dodecamer assembly occurs via this 

intermediate. The observation of toroids with differing dimensions appears to support the 

suggestion that a “loose” toroid may form in certain conditions, which require further 

investigation. The nature of the toroid formed in response to high pH or his-tag presence is 

unknown. As the protein is not reduced it is possible that this conformation is different to the 

reduced dodecamer. 

 

 

A switch in structure in response to a change in pH could indicate that the protein 

function is altered by local changes within the cell, and often indicates that the protein 

acts a sensor, or is involved in signalling pathways. For example, thylakoid lumen 

acidification occurs in response to light, and leads to oligomerisation of the chloroplast 

protease Deg1 (Kley et al., 2011). This provides a mechanism of detecting potentially 

damaging conditions, and initiates the role of Deg1 in repairing damage caused by ROS 

during photosynthesis (Kapris-Pardes et al., 2007). Changes in cellular pH are also an 

important factor in apoptosis, with mitochondrial matrix acidification associated with 

the early stages (Takahashi et al., 2004). Unsurprisingly, the activities of many proteins 

involved in apoptotic pathways show pH dependence. For example, oligomerisation of 

the BclXL protein is driven by acidic pH – a response which is speculated to act as a 
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switch to activate the anti-apoptotic functions of the enzyme (Bhat et al., 2012). 

Collapse of the mitochondrial membrane potential is another key part of apoptosis, 

implicating proteins involved in ion transport across the membrane in apoptosis or its 

prevention (Marzo et al., 1998; Peng et al., 2009).  

 

The resemblance to the oligomeric behaviour of other apoptotic proteins, combined with 

its localisation in the mitochondria, could highlight an important physiological role of 

HsPrx3 in early apoptotic signalling cascades. This has been previously suggested (Cox 

et al., 2008; Nonn et al., 2003), and the results of this study could provide clues to the 

mechanism behind this involvement. Acidification of the mitochondrial matrix that 

occurs during apoptosis is within the range investigated in this work (Takahashi et al., 

2004; section 4.3.1.4), and so would induce HsPrx3 self-assembly. Oligomerisation of 

HsPrx3 has been linked with membrane adhesion (Cha et al., 2000), a process which 

has been seen in some Prxs to stimulate membrane channels and alter ion transport. This 

could suggest a role for HsPrx3 in pH sensing, and the subsequent activation of ion 

channels in response to early apoptotic events. 

 

Increases in local concentration can be caused in vivo through compartmentalisation of 

proteins, or binding events. For example, in the case of certain HIV structural proteins, 

self-assembly has been speculated to occur in response to an increase in local 

concentration due to RNA binding (Campbell and Vogt, 1995). In the case of HsPrx3, 

typical cellular concentrations are ~2.5 mg/mL (Cox et al., 2009). As concentration did 

not have a significant effect up to 5 mg/mL, it is unlikely that this effect is relevant in 

vivo, with factors such as redox state playing a much larger role in controlling HsPrx3 

oligomerisation.  

 

The appearance of HMW species formed through further association of dodecamers was 

seen in some conditions, most notably when his-tagged protein was studied at high 

concentrations. HMW species have been recorded in samples of other Prxs (Moon et al., 

2005; Jang et al., 2004; Saccoccia et al., 2012) with a concomitant switch in activity 
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suggested. Although it had been seen to stabilise the dodecamer in a homologous Prx, 

the his-tag had not previously been seen to be encourage HMW species formation (Cao 

et al., 2007). The appearance of these species of HsPrx3 could indicate the protein has 

functions beyond peroxidase activity, which are activated through changes in 

oligomeric state. As well as providing insight into the complex physiological role that 

Prxs play, deeper understanding of these HMW species and the factors that govern their 

formation could enable the design of mutations or engineered structures with increased 

propensity to form higher order structures. The mechanisms behind formation of these 

structures and their possibly relevance in vivo are further examined in chapter five and 

six. 
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Chapter 5 Influencing HsPrx3 quaternary structure 

 

5.1 Introduction 

 

The dynamic quaternary structure of the Prx family is well documented, but the 

mechanisms are poorly understood (Wood et al., 2002). Constructs that favour one or 

another structure have been generated (Parsonage et al., 2005; König et al., 2013), but 

locked structures are yet to be reported.  

 

An improved understanding of the factors involved is required in order to control the 

structural switching of HsPrx3; this chapter therefore explores the introduction of 

mutations, with the aim to influence self-assembly. Following investigations into the 

effect of environmental conditions on HsPrx3 quaternary structure (chapter four), 

mutations were introduced to the interface and active site regions of the protein, to 

mimic the structural changes thought to occur in response to environmental changes. 

This could lead to a greater level of control over the oligomerisation of HsPrx3, 

potentially highlighting nanotechnology applications.  

 

Toroid formation is linked to protein activity (Parsonage et al., 2005), but the exact 

causality is unclear. The non-native structures were assayed to ascertain the impact on 

altered quaternary structure on protein activity, and therefore gain preliminary insight 

into this link.  

 

5.2 Design and generation of HsPrx3 modifications 

 

The conservation of the A-type interface (see section 1.2.5.2), along with its 

involvement in the redox switch, and therefore Prx function, led to this interface being 
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chosen as the first target for site-directed mutagenesis. Most of the binding energy of 

protein-protein interfaces is due to a small number of amino acids known as hotspots 

(reviewed in Moreira et al., 2007). A targeted mutagenesis approach allowed the 

investigation of potential hotspots at the HsPrx3 interface, and subsequent assessment of 

the structure of the muteins generated. The approaches used when designing 

modifications to the interface followed the considerations detailed in chapter three 

(section 3.2). Previous studies attempting to alter the stability of the A-type interface of 

a different Prx with single residue mutations have been successful (Parsonage et al., 

2005), therefore the substitution of single native residues for alanine residues at 

potential H-bonding sites of the A-type interface was carried out in order to disrupt 

interactions. The loss of side chains removed any possibility for H-bonds, or 

electrostatic interactions forming.  

 

A second target of mutagenesis was the active site of HsPrx3. The architecture of this 

site along with the CP loop region has been seen to change in response to redox state 

(Wood et al., 2003), and was suggested to be involved in the control of Prx oligomeric 

state (section 1.2.3.2 – 1.2.5). Transition of the CP loop into the LU conformation is 

associated with the dissociation of the dodecamer to dimers, whilst the reduced form is 

stabilised by the FF loop (section 1.2.5.2). Preventing this loop from refolding, or 

increasing its mobility, was therefore explored as another avenue for designing 

oligomer-disrupting mutations.  

 

5.2.1 A-type interface analysis 

 

A detailed analysis of the A-type interface identified residues in this protein-protein 

interaction that could be targeted for mutagenesis. Potential bonding residues were 

determined through analysis of the BtPrx3 interface, carried out using the PDBePISA 

online bioinformatics tool (Krissinel and Henrick, 2007). This predicts interactions by 

identifying the residues that become buried when two subunits come together, and 
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analysing the proximity and bonding potential of these residues. Sequence alignment to 

HsPrx3 indicated that 98% of the residues at the interfaces are conserved (figure 5.1A). 

Therefore, the BtPrx3 interface was an appropriate model for informing site-directed 

mutagenesis of HsPrx3.  

 

The A-type interface is mainly stabilised through hydrophobic interactions which 

comprise a dense core (figure 5.1B). 26 residues were identified as contributing to the 

stability, comprised of 11 hydrophobic, 10 neutral and five hydrophilic residues 

(Monera, et al., 1995). 13 of the contributing residues are more than 50% buried by 

monomer association. These residues are located within the typical interfacial regions of 

2-Cys Prxs suggested by previous studies (Wood et al., 2002; figure 5.2A). Three H-

bonds were identified between serine 75 (S75) and aspartic acid 74 (D74) residues of 

opposing monomers, and between serine 78 (S78) and its counterpart on the other 

subunit (figure 5.2B). The interface is symmetric, with a second D74-S75 H-bond, and 

buries 673.4 Å
2 

per monomer. Pymol (DeLano, 2002) analysis of this oligomer interface 

suggested that the S78-S78 predicted bond is a direct bond, with the H-bond between 

D74 and S75 of each subunit being water-mediated.  
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A: Sequence alignment  

BtPrx3: 

APAVTQHAPYFKGTAVVNGEFKDLSLDDFKGKYLVLFFYPLDFTFVCPTEIVAFSDKANEFHDV

N   

HsPrx3: 

APAVTQHAPYFKGTAVVSGEFKEISLDDFKGKYLVLFFYPLDFTFVCPTEIIAFSDKASEFHDV

N 

 

BtPrx3:  

CEVVAVSVDSHFSHLAWINTPRKNGGLGHMNIALLSDLTKQISRDYGVLLEGSGLALRGLFIDP

N 

HsPrx3: 

CEVVAVSVDSHFSHLAWINTPRKNGGLGHMNIALLSDLTKQISRDYGVLLEGPGLALRGLFIDP

N 

 

BtPrx3: 

GVIKHLSVNDLPVGRSVEETLRLVKAFQYVETHGEVCPANWTPDSPTIKPSPAASKEYFQKVN   

HsPrx3: 

GVIKHLSVNDLPVGRSVEETLRLVKAFQFVEAHGEVSPANWTPESPTIKPHPTASREYFEKVN 

 
 
B: Cartoon representation 

 
Figure 5.1: Hydrophobic packing stabilises the BtPrx3 and HsPrx3 A-type interface 

A: Sequence alignment shows 93% sequence identity (BtPrx3 is shown as the top line of text, 
HsPrx3 the bottom). Differences are shown in red letters and highlighted with arrows. Interface 
regions are almost completely conserved. B: Cartoon representation of the BtPrx3 A-type 
interface. Side chains of the major contributors to the hydrophobicity of the A-type interface are 
shown. Labels are shown for the right hand monomer only for clarity. PDB ID: 1ZYE (Cao et 
al., 2005). 
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A: Interfacing residues    B: Cartoon representation of dimer interface 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5.2: Interface regions of BtPrx3 

A: PISA interface analysis suggested the presence of 3 H-bonds, which stabilise the interface. 
H-bonds are shown as black lines. B: Stabilising H-bonds occur between residues located in the 
interface helix (helix  4 – see section 1.2.3.1). Bonding residues are shown with stick 
representation. In A and B, region I is shown in red, region II is blue, region III is yellow, and 
region IV is orange. PDB ID: 1ZYE (Cao et al., 2005). 
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The A-type interface of the MtAhpE is a unique, redox insensitive A-type interface (Li 

et al., 2005; section 3.2.1). It was hypothesised that particular stabilising interactions of 

this interface could be introduced at the HsPrx3 A-type interface to increase stability of 

the dodecamer. Inspection of the sequence alignments (figure 5.3A) and overlaying the 

structures revealed some key differences. The MtAhpE A-type interface shows 

additional interactions between the loop regions at the outer and inner areas of this 

interface (figure 5.3B), contributed to by a high proportion of aromatic residues (section 

3.3.1). A notable difference is W95 of MtAhpE, which aligns with a threonine residue in 

the HsPrx3 interface (T104). W95 of each monomer forms an H-bond with E109 of the 

opposing subunit at the MtAhpE A-type interface, accounting for two unique 

interactions. In both MtAhpE and BtPrx3 all four and six (respectively) oligomer 

building interfaces identified within the crystal structure by PDBePISA showed 

minimal variations in residues involved or area, indicating a good level of confidence in 

the predicted interactions. 

 

5.2.2 Selection of mutations to alter assembly 

 

Five mutations were designed with the aim of altering the propensity of toroid 

formation or dissociation. Two of these were located at the A-type interface of HsPrx3 

and three were located in the active site pocket A summary of the mutations that were 

introduced to the HsPrx3 sequence is shown in table 5.1. 

 

5.2.2.1 Interface mutations 

 

Residue S78 is located at the core of the interface (figure 5.3), and forms a direct H-

bond to the other monomer (as opposed to the water mediated bond of the D74-S75 

interaction). These suggest an important role in the interface. This interaction is 
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conserved in the stable MtAhpE A-type interface, further supporting its importance. An 

equivalent mutation of StAhpC, T77V, was shown by Parsonage et al. (2005) to affect 

the toroid stability. Preliminary studies in the Gerrard laboratory indicated that the 

S78A mutation also significantly influenced toroid assembly (Zhu, 2010, unpublished 

data; Littlejohn, Master’s thesis 2013), therefore this mutation was studied. Whilst W95 

of MtAhpE aligns with T104 of HsPrx3, E109 is conserved. This suggests that the 

mutation of residue 104 of HsPrx3 to tryptophan may allow equivalent H-bonds to 

form. Therefore, a T104W mutation was studied. 

 

A: Sequence alignment 

HsPrx3:  
LSLDDFKG-KYLVLFFYPLDFTFVCPTEIVAFSDKANEFHDVNCEVVAVSVDSHFSHLAWNTPRKNGGLG 

MtAhpE:  
VTLRGYRGAKNVLLVFFPLAFTGICQGELDQLRDHLPEFENDDSAALAISVGPPPTHKIWAT---QSG--  

HsPrx3: 
HMNIALLSDLTKQ--ISRDYGVLLEGSGLALRGLFIIDPNGVIK  

MtAhpE: 
-FTFPLLSDFWPHGAVSQAYGVFNEQAGIANRGTFVVDRSGIIR 

B: Cartoon representation 

 
Figure 5.3: Bonding residues of the BtPrx3 and MtAhpE A-type interfaces show some 
differences 

A: Sequence alignment shows significant differences in the interface regions (coloured as in 
figure 5.2). B: The interfaces overlay well. The MtAhpE interface shows additional interactions, 
namely the Q83-Q83 and the W95-E109 interaction. BtPrx3 chains and labels are shown in 
grey, MtAhpE chains and labels are shown in magenta and black respectively. Labels are shown 
for the right hand monomers only for clarity. The S78-S78 interaction of BtPrx3 is conserved, 
corresponding with a T76-T76 H-bond in MtAhpE. E109 of MtAhpE aligns with E116 of 
BtPrx3, however W95 is not conserved. 
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Table 5.1: Summary of rationale behind mutational design 

Interface mutations were designed based on bonding potential in the area, active site mutations 

were designed to mimic the conformational changes that occur naturally during assembly or 

disassembly. 

 

Mutation 

Interface Mutations 

Intended outcome Rationale 

S78A Stabilise the A-type 

interface 

Altered packing at the interface as 

seen by Parsonage et al., could 

lead to increased stability.  

T104W Stabilise the A-type 

interface 

Introduce the potential for a novel 

H-bond, mimicking the MtAhpE 

A-type interface. 

Active Site Mutations   

C47S Prevent dodecamer 

dissociation; encourage 

HMW species 

Prevent disulfide bond formation 

and interface destabilisation; 

mimic the protonated form of CP.  

P48A Prevent dodecamer 

dissociation 

Reduce the propensity of the  CP 

loop to unfold 

R123G Promote dodecamer 

dissociation 

Remove the possibility of the CP 

thiolate-R123 ionic bond, 

encouraging loop unfolding. 

 

5.2.2.2 Active site mutations 

 

A serine substitution was introduced at the peroxidatic cysteine, C47. Serine lacks a 

thiol group and cannot form the disulfide bond. This mutation was predicted to prevent 

dissociation, as without disulfide bond formation the loop will not be trapped in the LU 

conformation (section 1.2.4.4), and the A-type interface will not be destabilised. 

Furthermore, protonation of CP caused by acidification has been seen to encourage the 

formation of HMW structures (Saccoccia et al., 2012). Serine will not be deprotonated 

in the active site, therefore this mutation was predicted to mimic the protonated form, 

with associated unwinding of helix α2 leading to toroid association (section 1.2.5.4). 

Decreasing the propensity of the CP loop to unfold was also predicted to stabilise the 

dodecamer. A conserved proline (P48 in HsPrx3) has been highlighted as important to 
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the ability of this region to unwind (Saccoccia et al., 2012). The α2 helix of MtAhpE 

does not unwind as extensively upon oxidation (section 1.4.2.4), and sequence 

comparisons showed that this proline is not conserved in MtAhpE, strengthening the 

hypothesis that it contributes to interface dissociation. P48 of HsPrx3 was therefore 

mutated to alanine. The gene encoding the P48A mutation was designed and obtained 

by Jacob Littlejohn in the Gerrard Laboratory. 

 

The deprotonated form of CP is stabilised by a conserved arginine – R123 in the case of 

HsPrx3 (section 1.2.3.2). Upon oxidation, CP moves away from R123 to form the 

disulfide bond with CR, allowing the CP loop to unfold (section 1.2.4.3; Wood et al., 

2003; figure 1.7). It follows therefore, that without the stabilising interaction between 

CP and R123, the LU conformation may be stabilised, mimicking the oxidised state. 

Early studies have shown this conserved arginine residue to be important for catalytic 

activity (Kӧnig et al., 2003), and during the course of this thesis results were published 

confirming its importance in the activity of HsPrx3 with H2O2 (Nagy et al., 2011). R123 

was therefore chosen as a target for mutation.  

 

A double mutation combining the active site and interface mutations C47S and S78A 

was also designed (C47SS78A). The results obtained for the single muteins informed its 

design, and so this is further discussed in section 5.4.1. 

 

5.3 Preparation of mutated HsPrx3 constructs 

 

5.3.1 Expression of non-native proteins in an E. coli host 

 

E. coli expression strains were transformed with the pET151/D-TOPO® plasmid 

containing the modified HsPrx3 gene and cultured as described in section 2.2.2. 
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Expression trials indicated that optimum expression was achieved using identical 

conditions to wildtype HsPrx3 (see section 4.2.1). BL21 High yields of soluble protein 

were obtained, typically 60-70 mg of protein per 1 L culture after purification (section 

5.3.2; table 5.2). The C47S mutein was an exception, with a tendency to aggregate 

throughout the purification resulting in low yields. 

 

Table 5.2: Good expressions of the HsPrx3 muteins were seen in conditions optimised in 

chapter three  

Sufficient quantities of pure protein were easily obtained, with yields often higher than those 

obtained from wildtype purification in identical conditions (detailed in section 4.2.1).  

 

Construct Pellet 

weight (g) 

Weight of 

protein after 

IMAC (mg) 

Weight of 

protein after gel 

filtration (mg; 

final yield) 

Weight of 

protein per 

gram cells 

(mg) 

WT 5.6 120 80 14.3 

S78A 4 122 64 16 

T104W 4.4 140 80 18 

P48A 5.2 150 90 17 

R123G 4.8 100 56 9.6 

C47S 4.9 41 22 4.5 

C47SS78A 4.9 100 42 8.6 

 

 

5.3.2 Purification by chromatography 

 

The molecular weight and pI of the mutated HsPrx3 constructs were similar to that of 

the wildtype (see appendix four). Muteins did show some differences in their elution 

volumes from IMAC and gel filtration chromatography (figures 5.4 and 5.5). However, 

these did not affect purification, therefore standard protocols optimised for wildtype 

HsPrx3 continued to be used for mutein purification (section 4.2). Muteins bound 

successfully to the nickel resin, with very little being seen in the flowthrough or wash 

fractions (figure 5.6A). S78A, T104W, C47S, P48A, and R123G constructs consistently 
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eluted as single peaks at imidazole concentrations of around 390 mM, 475 mM, 500 

mM, 270 mM, and 500 mM respectively (figure 5.4).  

 

Gel filtration chromatography was carried out as for wildtype (section 4.2.2). Muteins 

typically eluted with a clear major peak, seen at retention volumes of about 60 mL, 77 

mL, 47 mL and 90 mL for S78A, T104W, P48A and R123G constructs respectively 

(figure 5.5). Fractions were collected across peaks, and a single major band was seen on 

SDS-PAGE (figure 5.6C). Muteins often ran below the 20 kDa marker (for example, 

figure 5.6D). MS analysis of purified S78A mutein confirmed the molecular weight of 

25.2 kDa, indicating that degradation had not occurred but that muteins had slightly 

different electrophoretic mobility to wildtype. The difference to the wildtype elution 

profile (figure 5.5F) suggested that the oligomeric state may have been altered. In some cases, 

peaks near to the void volume (36.3 mL; seen in S78A, P48A and C47S elution 

profiles) indicated that aggregation was occurring. SDS-PAGE analysis of these peaks 

confirmed them to represent assemblies of HsPrx3 muteins, rather than contamination 

(figure 5.6D; appendix six). 

 

His-tag removal was carried out using the conditions seen to be optimal during trials 

with wildtype HsPrx3 (section 4.2.4). Cleavage was successful in these conditions, as 

judged by SDS-PAGE analysis (figure 5.7). In some cases (notably, cleaved T104W 

and tagged C47S; appendix six), SDS resistant dimers and higher order structures were 

noted. In the case of tagged P48A a double band was seen at the size of a dimer, with no 

dissociation to monomers being seen after incubation with reducing SDS buffer (figure 

5.7). Although this resolved to monomers after tag cleavage in the case of P48A, the 

higher weight band persisted after cleavage in the case of T104W and C47S. This has 

been seen by other groups (discussed in section 4.2.3). As with those observed in 

MtAhpE samples (section 3.4.1.1), incubation with SDS at room temperature instead of 

heating did not reduce their appearance, indicating they were not due to amide cross-

linking. Further analysis by MS would be useful to unequivocally confirm the identity 

of these bands. 
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A: S78A          B: T104W 

     
C: P48A          D: R123G 

      
E: C47S           F: C47SS78A 

     
  G: Wildtype 

 

 

Figure 5.4: Mutated proteins elute at different imidazole concentrations to wildtype HsPrx3 

Elution profiles of (A) S78A (marked fractions relate to figure 5.6), (B) T104W, (C) P48A, (D) 

R123G, (E) C47S and(F) C47SS78A variants of HsPrx3 elute at different imidazole 

concentrations than wildtype HsPrx3 (F, for comparison). 
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A: S78A        B: T104W 

 
C: P48A          D: R123G 

 
E: C47S          F: C47SS78A 

  
G: Wildtype 

 
Figure 5.5: Gel filtration profiles of mutated HsPrx3 proteins differed from wildtype 

Whereas wildtype HsPrx3 eluted consistently as a single major peak around 60 mL from an 

S200 16/60 gel filtration column (GE Healthcare), mutated constructs (A) S78A (marked 

fractions relate to figure 5.6), (B) T104W, (C) C47S, (D) P48A, (E) R123G, (F) C47SS78A 

showed peaks at different elution volumes compared to wildtype (G, for comparison). 
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A: Lysis step    B: IMAC purification 

   
 
C: Gel filtration purification     D: Final purity 

  
 

Figure 5.6: Representative mutein purification gels exemplified by S78A 

A: Lysis steps shows: lane 2: whole cell lysate; lane 3: insoluble fraction; lane 4: soluble 

fraction; lane 5: IMAC flowthrough; lane 6: IMAC wash fraction. B: Fractions across the wide 

single peak of IMAC elution (figure 5.4A). C: Selected fractions across the gel filtration peaks 

(figure 5.5A): lane 2: shoulder peak; lanes 3 and 4: main peak; lane 5: late shoulder peak; lane 

6: late eluting minor peak. D: Gel showing acceptable purity of a final sample to be used for 

experimental data collection. SDS-PAGE gels for the other mutated protein purifications can be 

found in appendix six. 
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Figure 5.7: All muteins were successfully prepared to high levels of purity 

5µg of final samples after purification were loaded at 1 mg/mL for SDS-PAGE analysis.  

 

 

 

All samples analysed were from homogeneous preparations, as judged by SDS-PAGE 

with Coomassie blue staining (figure 5.7). The possibility of contaminating proteins 

contributing to elution peaks or weight calculations during biophysical analysis is low. 

 

 

5.4 Characterisation of single residue mutations of HsPrx3  

 

Data collected for HsPrx3 muteins without his-tags is presented, as the tag had been 

seen to affect wildtype oligomeric state (section 4.3.1.3). This gave a clear picture of the 

influence of the mutation on HsPrx3 structure. Samples were also characterised with 

his-tags, although for most this did not provide useful information as it was not possible 

to differentiate the influence of the his-tag and of the mutation. Where his-tagged 

characterisation was considered meaningful the results are discussed. All SEC/SLS and 

SAXS data for his-tagged muteins can be found in appendix seven. Additional SAXS 
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data is also recorded in appendix 7 (as detailed in section 5.4.1.2). The C47S mutein 

was an exception as untagged samples were difficult to prepare and aggregated in the 

time required to run experiments. Therefore, only the tagged mutein, which was more 

stable, was characterised.  

 

 

5.4.1 Quaternary structure of HsPrx3 muteins  

 

5.4.1.1 Size Exclusion Chromatography/Static Light Scattering (SEC/SLS) 

 

Non-reducing conditions 

Wildtype HsPrx3 had been seen to exist as a dimer when the sample was not reduced 

(section 4.3.1.2). In identical conditions, it was apparent that single residue 

substitutions, in most cases, significantly altered the assembly properties of HsPrx3. 

The S78A mutein existed in a heterogeneous state, with four species including the dimer 

and dodecamer observed (figure 5.8A). The RI trace indicated large amounts of HMW 

species were also present, calculated to be a 748 kDa species; possibly three associated 

dodecamers. However, the molecular weight dropped across the peak, making accurate 

calculations difficult. As the peaks do not show baseline separation it is difficult to 

discern if the decreasing molecular weight across the peak is due to species in 

equilibrium, or discrete species with overlapping elution peaks. Although a considerable 

amount of dimer remained in solution, the dodecamer represented a significant 

proportion of the species present. This is in contrast to the wildtype protein in 

comparable conditions, in which no dodecamers were observed (section 4.3.1.2, figure 

4.10A). Increasing the protein concentration up to 5 mg/mL did not change the species 

distribution (data not shown).  
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A: S78A             B: T104W 

 
C: P48A              D: C47S 

 
E: R123G    

 
Figure 5.8: In non-reducing conditions, muteins showed altered quaternary structures 

A: S78A mutein existed as a mixture of dimeric and dodecameric species, with HMW 
aggregates. B: T104W behaved similarly to wildtype, mostly existing as a dimer with a small 
amount of tetramer observed. C: The P48A mutation was mostly dodecameric, with some 
tetramer present. D: C47S mutein existed primarily as a dodecamer, with two peaks 
representing larger species. E: R123G existed as a stable dimer. Wildtype HsPrx3 in non-
reducing conditions is shown with the dashed lines. Molecular weight across the peaks is shown 
with the red lines. 
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Untagged T104W mutein behaved similarly to wildtype HsPrx3, with the 42 kDa dimer 

being the predominant species in non-reducing conditions (figure 5.8B). Similar to 

wildtype samples, a tetrameric species was seen. However, the decreasing molecular 

weight across the peak suggested that the mutein tetramer was less stable than that of 

wildtype HsPrx3, and rapidly dissociates. This indicated a reduced propensity of the 

dimers to oligomerise, possibly suggesting a weakened interface. Interestingly, When 

T104 was mutated, the his-tag did not stabilise the dodecamer (appendix seven). In non-

reducing conditions the his-tagged mutein exists as a 49 kDa species, unlike the his-

tagged wildtype which remained dodecameric in identical conditions (section 4.3.1.3). 

These results suggest that the mutation introduces a change in tertiary structure which 

prevents his-tag stabilisation. 

 

In non-reducing conditions, no dimer peak was seen in the RI trace of the P48A mutein. 

Although one 266 kDa species appeared to predominate, this peak was broadened by 

shoulders at both the leading and trailing edges (figure 5.8C). The continuous drop in 

molecular weight across the peak and long leading edge indicates the presence of HMW 

assemblies in fast equilibrium.  

 

In non-reducing conditions the tagged C47S mutein eluted as a major peak representing 

a 319 kDa assembly, with no deviation from the baseline at later elution volumes (figure 

5.8D). The molecular weight is slightly higher than that of a tagged dodecamer (302 

kDa), and the upward trend in molecular weight at the beginning of the peak indicates 

that the HMW assemblies present affected calculations. These assemblies appeared to 

comprise at least one discrete population, calculated to have a weight of 800 kDa. A 

leading edge shoulder was seen, indicating a second population of high weight species, 

however calculations gave inconclusive results for this species. The low elution volume 

and trailing nature of the peak suggested that this shoulder may represent heterogeneous 

aggregates rather than a discrete assembly.  
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The R123G mutein eluted as a single peak in non-reducing conditions, with molecular 

weight calculations revealing this to correspond to a 42 kDa dimeric species (figure 

5.8E). The constant molecular weight across the peak indicated that the dimer was 

stable, and the tetrameric species seen in wildtype preparations (section 4.3.1.2) was not 

observed.  

 

Reducing conditions 

In reducing conditions, wildtype protein existed as a dodecamer, with very small 

amounts of smaller species seen (section 4.3.1.2). Overall, muteins appeared more 

homogeneous in reducing conditions. The primary species seen was the dodecamer 

(with the exception of the R123G mutein), and in all cases where HMW species had 

been seen in non-reducing conditions, their presence was significantly lessened or 

eliminated in reducing conditions. This supports early work (Zhu 2010, unpublished 

work) who observed that HMW species of the S78A mutein dissociated upon addition 

of a reducing agent. 

 

When reduced, the S78A mutein existed almost completely as a dodecamer (figure 

5.9A). The presence of HMW species was significantly diminished, and he calculated 

weight for this species was 521 kDa, in line with two associated dodecamers. However, 

the molecular weight across the peak is noisy due to low signal, so firm conclusions 

cannot be drawn. Interestingly, a slight shift is seen in elution volume of the dodecamer 

between reduced and non-reduced samples (12.0 and 11.5 mL respectively), although 

calibration to light scattering produces equivalent molecular weights for the peaks. 

Elution volume is affected by particle size and shape, and so this shift could indicate 

that the dodecamer of the non-reduced sample is comprised of oxidised dimers which, 

despite stabilisation of this conformation by the mutation, adopt a more open ring (in 

line with the theory proposed in section 4.4 regarding the dimensions of an oxidised 

toroid). 
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A: S78A      B: T104W 

 
C: P48A                D: C47S 

 
E: R123G 

 
Figure 5.9: In reducing conditions muteins showed a variety of oligomeric states 

A: S78A mutein existed primarily as a dodecamer, with a small amount of HMW species seen. 
B: The T104W mutation appeared to destabilise the dodecamer, as dimeric and tetrameric 
species were seen in reducing conditions. C: P48A mutein existed as a dodecamer, however the 
protein was unstable in these conditions. D: The HMW species of the C47S construct were less 
apparent in reducing conditions, indicating a dodecameric arrangement to be the favoured 
species. E: No large species were seen in R123G preparations, with the dimer being the only 
assembly present. 
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The equilibrium of the T104W mutein was shifted to favour the dodecamer, with 

calculations indicating a weight of 265 kDa species (figure 5.9b). Later peaks indicated 

that small amounts of tetrameric and dimeric species remained in solution, which was 

not seen in reducing wildtype preparations, possibly indicating a weakened A-type 

interface. The his-tagged construct eluted as one major peak in reducing conditions, 

with a calculated weight of 315 kDa, consistent with a dodecamer (appendix seven). No 

smaller species were seen in the tagged sample, and the peak showed a leading edge 

which could indicate the presence of HMW species. 

 

The P48A mutein showed a smaller amount of HMW species in reducing conditions 

(figure 5.9C), and the trailing edge of the peak lessened. This suggested that sample was 

more homogeneous, with the dodecamer being the predominant species. This is similar 

to the profile of the S78A mutein, where the addition of a reducing agent led to the 

dissociation of HMW species. The RI profile of the C47S mutein was also similar to 

that of S78A, showing a reduction in high weight species (figure 5.9D). Instead, 

reduced mutein exists as an almost homogeneous population, with a single peak 

corresponding to the dodecamer. As with non-reducing conditions no dimer peak is 

seen, suggesting that all dimers are assembled into dodecameric arrangements. 

 

R123G was the only mutein that did not oligomerise in reducing conditions. Instead, 

SEC/SLS gave identical results to in non-reducing conditions, with mutein continuing 

to elute as a single peak. Molecular weight calculations corresponded to a dimer, with 

weight consistent across the peak, indicating that no larger species are present (figure 

5.9E). This is dramatically different to the redox switching of the wildtype (section 

4.3.1.2) and indicates that mutation of R123 removes the redox sensitivity of HsPrx3. 

As reduction no longer induced self-assembly, the potential of other factors to drive 

association of the R123G mutein was therefore investigated. The presence of an N-

terminal his-tag, and increased protein concentration (sections 4.3.1.3; 4.3.1.5) had been 

seen to encourage dodecamer assembly of wildtype HsPrx3, regardless of redox state. 

These conditions were examined in the case of the R123G mutein. Neither addition of 
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the his-tag, nor increased protein concentration showed any evidence of a dodecameric 

species, with R123G remaining as free dimers in solution as indicated by SEC/SLS 

analysis (appendix seven). 

 

5.4.1.2 Small Angle X-ray Scattering (SAXS) 

 

SAXS data for muteins were compared to theoretical values for wildtype HsPrx3 

oligomeric states, calculated using CRYSOL (section 2.5.5.2; Svergun et al., 1995). RG 

calculated using the GNOM program (Svergun, 1992) is presented. This is considered to 

be more accurate than Guinier region calculations as it using the entire scattering range 

for the calculation (Semenyuk and Svergun, 1991). Concentration dependence was only 

seen in the case of untagged T104W and S78A and concluded to not be significant 

(discussed below), therefore only data collected from samples injected at 1 mg/mL are 

presented for ease of comparison. All calculated values including errors can be found in 

appendix seven. As calculations represent a solution average, and in many cases the 

muteins existed as heterogeneous solutions, the tendency toward a particular species 

was assessed by the deviation from the theoretical masses for a homogeneous sample of 

dodecameric or dimeric species. 

 

Non-reducing conditions 

The S78A sample was calculated to have an average mass of 364 kDa (table 5.3), 

indicating that HMW species make up a significant percentage of the total population, 

in line with SEC/SLS results. The presence of these species appeared to increase with 

concentration, however, the non-reduced sample was inclined to aggregate, and the 

disagreement of RG calculations from the Guinier region and GNOM at higher 

concentrations suggested this was occurring (appendix seven). The nonlinear 

dependence of log(I(q)) vs. q
2
 over the range in which the Guinier approximation is 

valid supported this (appendix 7, figure A7.2A). It was therefore not concluded to be a 

valid concentration dependence.  
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Table 5.3: SAXS data supported SEC/SLS results 

Species distributions in non-reducing conditions were assessed by the deviation from the 

theoretical values for homogeneous samples. S78A, P48A and C47S all showed average 

weights indicative of the presence of HMW species, whereas T104W and R123G existed as 

small species. 

 

Sample Dmax 

(Å) 

RG from GNOM 

(Å) 

Volume 

(Å
3
) 

MW  

(kDa) 

Number 

of dimers 

S78A 223 83 70000 364 17 

T104W 118 30 95000 60 4 

P48A 221 66 613000 346 16 

C47S 204 60 607000 369 17 

R123G 87 25 74100 46 2 

Wildtype 

     Dimer 
~60 Theoretical RG: 20 49800 42 2 

Wildtype 

     Decamer 
~130 Theoretical RG: 48 392000 214 10 

Wildtype 

     Dodecamer 
~180 Theoretical RG: 59 417000 257 12 

 

 

 

 

SAXS data collected for the T104W sample gave an average weight that was between 

that of a theoretical dimer and a tetramer, very similar to that seen for non-reduced 

wildtype (section 4.3.1.2.). This agrees with SEC/SLS results that indicated the dimer 

was the predominant species, with a small amount of tetramer present. The weight 

calculations were slightly concentration dependent, however, aggregation began to 

occur at 2 mg/mL (as judged similarly to that for S78A described above, appendix 

seven, figure A7.2), therefore weight calculations cannot be considered accurate at this 

concentration.  

 

SAXS analysis of the P48A mutein was somewhat inconclusive as the presence of 

multiple species did not allow characterisation of individual populations. However, the 

average weight of particles solution showed a shift towards higher weights than 

wildtype samples, suggesting that the mutation promoted the formation of HMW 

species (table 5.3). In non-reducing conditions an average weight of 346 kDa was 

recorded, which showed no concentration dependence. RG calculated from the Guinier 
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region and GNOM are not in agreement, indicating that the sample was aggregated 

(appendix seven). Data collected from samples run through the in line FPLC column did 

not improve the accuracy of results, with calculations yielding values from 283 to 880 

kDa, confirming that aggregation was occurring even as the protein elutes from the 

column. This is in line with the broad RI peak and SEC/SLS analysis, indicating the 

presence of a number of species in rapid transition. The tagged C47S mutein produced a 

fairly stable population of species, as judged by SAXS data. The average molecular 

weight of 369 kDa calculated at 1 mg/mL, which indicates the presence of HMW 

species. However, the increase compared to a homogeneous dodecameric sample is not 

dramatic (~60 kDa), suggesting that the dodecamer remains the dominant species, in 

line with chromatographic analysis. The standard error across the sample was low, 

suggesting that the species distribution is stable (appendix seven).  

 

The R123G mutein was found to be fairly unstable, and was prone to aggregation and 

rapid degradation, even when kept at 4°C, and was particularly problematic with 

synchrotron samples. This was indicated by the appearance of a second band migrating 

at a distance indicating a species 5 kDa smaller than the original sample on SDS-PAGE. 

Similar degradation had been seen to occur in wildtype samples, and has been observed 

by other groups (Winterbourn, personal communication). Peptide sequencing of this 

lower band in the case of wildtype HsPrx3, confirmed it to represent a truncated version 

of the protein, where the N-terminal residues were not seen, consisting with degradation 

(appendix five). Care was taken during purification to ensure that experimental samples 

showed no degradation (figure 5.7) and the timescale of experiments was kept to a 

minimum. However, the tendency to aggregate made data collection challenging and so 

only samples run through the in-line FPLC column were used for SAXS analysis. In 

non-reducing conditions, SAXS data confirmed the SEC/SLS data. The molecular 

weight of the untagged mutein at the apex of the peak eluting from the column indicated 

a species of 46 kDa, consistent with the theoretical weight of a dimer (table 5.3). 

However, the nonlinear Guinier plot (appendix seven, figure A7.2) indicated significant 

aggregation, and so results cannot be interpreted with confidence. 
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Reducing conditions 

As the SEC/SLS data had revealed, the HMW species were redox sensitive, which was 

confirmed by SAXS. The average weight of three muteins that had shown a propensity 

to form assemblies larger than the dodecamer (S78A, P48A and C47S) decreased in 

reducing conditions (table 5.4). The S78A mutein had an average weight of 310 kDa 

when analysed at 1 mg/mL. This is considerably lower than the non-reduced sample, 

but reveals that HMW species are still contributing to the population.   

 

 

Table 5.4: SAXS analysis indicated that the HMW species are redox sensitive 

The S78A, P48A and C47S muteins in reducing conditions showed a decrease in average mass, 

consistent with a loss of HMW species. T104W showed an increased weight, indicating a shift 

to favour the oligomer, while R123G did not change significantly. 

 

Sample Dmax 

(Å) 

RG from GNOM 

(Å) 

Volume 

(Å
3
) 

MW  

(kDa) 

Number 

of dimers 

S78A 194 62 513000 310 15 

T104W 178 54 206000 127 6 

P48A 211 62 506000 302 14 

C47S 187 57 532000 331 15 

R123G 100 29 97500 51 2 

Wildtype 

 Dimer 
~60 Theoretical RG: 20 49800 42 2 

Wildtype 

 Decamer 
~130 Theoretical RG: 48 392000 214 10 

Wildtype 

 Dodecamer 
~190 Theoretical RG: 57 502000 302 12 

 

 

 

In reducing conditions the average weight of T104W was increased compared to non-

reducing conditions, indicating that the equilibrium was shifted toward to the 

dodecamer (table 5.4). A slight concentration dependence was seen in reducing 

conditions, with average molecular weight increasing to 215 kDa at 2 mg/mL (appendix 

seven), though again some aggregation is occurring at this concentration. The values 

obtained are lower than that expected for a dodecamer, and it is unlikely that the small 

amount of dimeric species present when the protein is at 1 mg/mL (as judged by 
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SEC/SLS, figure 5.9B) would influence the average weight so significantly. This result 

hinted toward the presence of some decameric species, and is further investigated in 

section 5.4.1.3. 

 

The P48A mutein showed a decrease in average weight, revealing that the sample was 

more homogeneous and the predominant species was the dodecamer. Some influence 

from HMW species was seen as the weight was increased compared to that expected for 

a homogeneous population of dodecameric species (table 5.4). 

 

5.4.1.3 Transmission Electron Microscopy (TEM) 

 

Prxs have been reported to form a number of high weight structures. TEM was utilised 

to gather further data relating to the assemblies accessible to HsPrx3. Muteins that were 

seen to form HMW species were therefore considered for TEM analysis. The P48A and 

C47S muteins were found to be unstable in solution, and preliminary attempts to 

characterise the constructs by TEM showed amorphous aggregation. Therefore, further 

characterisation was not carried out on these proteins. 

 

The S78A mutein 

Examination of the S78A micrographs revealed the presence of dodecameric toroids. A 

striking feature of the micrographs was the appearance of clusters of toroids, which had 

not been seen in wildtype samples (figure 5.10A). The recurrence of these clusters over 

a number of grids of different samples and dilutions, consistency of the images and 

similarity to other groups’ results (Jang et al., 2004; Meissner et al., 2007) suggested 

that these structures were not artefacts, nor random aggregation. Comparison to 

particles seen in raw images as published by Meissner et al. (2007) showed a strong 

resemblance (figure 5.10B). The published particles were used to generate a 3D 

reconstruction which resulted in a dodecahedral cage (section 1.2.5.3, Meissner et al., 

2007). Similar structures have also been observed for other Prxs when hyperoxidising 
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conditions are imposed (Jang et al., 2004), although detailed structural characterisation 

was not carried out. Higher resolution TEM studies of S78A samples could provide a 

link between the cage-like structures and hyperoxidised state, and would be useful 

future work.  

 

The T104W mutein 

Although SEC/SLS indicated the presence of a dodecamer in reducing conditions, this 

was not seen by SAXS. Although the smaller species that were seen by SEC/SLS would 

influence the average mass, the oligomer was seen to be the predominant species (figure 

5.9B). It was therefore surprising that at the highest concentration studied (2 mg/mL), 

the average weight was 215 kDa, closer to the weight of a decamer. The T104W 

mutation was designed based on the A-type interface of MtAhpE (section 3.3.1). This is 

a stable, redox-insensitive interface found in an octamer forming Prx. It was therefore 

hypothesised that the mutation may have induced some changes to the geometry of the 

interface, possibly altering the oligomer composition. 

 
 
A: S78A micrograph B: Particles from 

Meissner et al., 
2007  

              
 
Figure 5.10: Untagged S78A forms dodecameric rings and clusters 

A: The toroids (black squares, top two enlargements) appeared similar to wildtype dodecamers. 

Clusters were observed (red squares, bottom enlargements), which had not been seen in 

wildtype samples. B: Enlarged particles from the raw micrographs published by Meissner et al., 

(2007) show striking similarity to the clusters of S78A. 
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The prevailing structure in the T104W micrographs was the dodecameric oligomer, with 

many of the particles showing clear hexameric arrangements of dimers. However, a 

number of toroids had a smaller diameter and an apparent five-fold symmetry (figure 

5.11). Analysis using ImageJ software suggested these particles to have a diameter of 

~13 nm. This is smaller than the expected diameter for a dodecameric toroid (15 nm, 

Cao et al., 2005), and be more in line with that expected for a decamer (13 nm, 

Schrӧder et al., 2000). A change in toroid dimensions could prevent the coordination of 

his-tags in the centre of the dodecamer (section 4.3.1.3), explaining the inability of the 

his-tag to stabilise the mutein. However, this only accounts for a small percentage of the 

particles, which indicates the his-tag is also causing subtle tertiary structure changes. It 

could also account for the weight of the untagged sample by SAXS, which was more in 

line with a decamer. Side views of stacked toroids were also seen, though these were 

not present in solution and so were concluded to be promoted by the conditions or 

increased protein concentration of TEM grid preparation, their absence in wildtype 

preparations (section 4.3.1) suggests that the T104W mutation is influencing their 

formation. The structure of toroid stacks and possible mechanisms of formation are 

discussed in chapter six.  

 

 

 
Figure 5.11: Electron micrograph of T104W revealed a heterogeneous population of 

toroidal species 

Raw images of T104W in reducing conditions revealed a number of toroidal oligomers with 6 

dimeric subunits clearly discernible (red box and enlargement). Some particles showed five-fold 

symmetry (black box and enlargement), and a number of stacks of toroids were observed, 

indicated by white arrows. 
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5.4.2 A combination of mutations generated a stable species 

 

Although the C47S, S78A and P48A muteins showed a propensity to form HMW 

structures, these constructs were unstable and prone to aggregation. Aggregation of 

other Prxs with active site mutations has been seen by other groups (Angelucci et al., 

2013). Although this suggested that the aim of the mutation to influence self-assembly 

has been successful, the instability meant the constructs were not useful for further 

experiments. One of the goals of this study was to produce stable, locked structures of 

HsPrx3, which were of interest from a bionanotechnological stand point (section 1.5). 

The C47S mutation removed the redox sensitivity which meant that precise control of 

the redox state was not necessary to maintain a single conformation. It was considered 

that the C47S mutein may aggregate due to random association of oligomeric 

intermediates such as tetramers, about the R-type interface (section 1.2.5.4). The S78A 

mutation was seen to discourage dissociation of the dodecamer into dimers, and was 

therefore introduced to the C47S construct (section 2.2.3), with the aim to produce a 

more stable species. Design of mutagenic primers for this reaction and mutagenesis 

reactions were carried out by Dr. Céline Valéry at the University of Canterbury. It was 

predicted that the loss of the R123-C47 ionic bond would result in α2 helix unwinding. 

When this occurs within the subunits of the interface mutation stabilised toroid, it was 

predicted that an increase in stable, HMW structures would be seen. 

 

5.4.2.1 Size Exclusion Chromatography/Static Light Scattering 

 

In non-reducing conditions, untagged C47SS78S existed as an almost homogeneous 

population, with a major peak eluting at 11.9 mL, corresponding to a species of 257 kDa 

(figure 5.12A). One earlier eluting peak was seen, with calculations suggesting a species 

of 600 kDa, which appears to correspond to a species composed of 28 subunits. It is 

likely that this represents two associated toroids. In reducing conditions the elution 
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profile was unchanged (figure 5.12B), which was unsurprising as CP is responsible for 

the redox sensitivity of HsPrx3. No aggregation was seen and the molecular weight 

across the HMW species peak was constant, indicating that this assembly is stable. In 

non-reducing conditions the molecular weight shows an upward trend, indicating that 

high weight species not detectable by the RI may be present. The sensitivity of the 

quaternary structure to redox state is surprising given the lack of CP. Covalent 

intermolecular bonds are thought to be possible through CR-CR disulfide bonds after 

random association of monomers (Chae et al., 1994; Ellis and Poole, 2007), and could 

be responsible for the inconsistent weight seen in the non-reduced double mutein.  

 
 
 
A: Non-reducing conditions         B: Reducing conditions 

 

Figure 5.12: The C47SS78A mutein prevents dodecamer dissociation 

A: In non-reducing conditions the elution profile of the mutein suggests the weight of the major 

species in solution is 257 kDa, which agrees well with a dodecamer. A shoulder peak is seen 

which suggests a double dodecameric species. This is markedly different to the non-reduced 

wildtype sample, which exists as single dimers (shown as a dashed line for comparison). B: In 

reducing conditions the mutein elution profile appears largely unchanged, although the shoulder 

peak represents a slightly smaller proportion of the population. Molecular weight across the 

peak is shown as a red line. 
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5.4.2.2 Small Angle X-ray Scattering 

 

In both reducing and non-reducing conditions SAXS data agreed with SEC/SLS data. 

The average molecular weight was ~80 kDa higher than that expected for a 

dodecameric species (table 5.5), indicating that larger species were also present. The 

consistent impact on the average weight suggests that this HMW species is stable. Very 

little variability or errors were seen between images taken within a sample (table 5.5 

and appendix  seven) – this is in contrast to the single S78A or C47S muteins which 

showed variations of up to 60 kDa between images recorded from a single sample. This 

suggests the double mutation increased the stability and uniformity of assemblies 

compared to single muteins. The average weight was not concentration dependent 

within the range tested, as indicated by calculations and superposition of scaled 

scattering curves (data not shown). No indication of aggregation was seen in any 

condition. 

 

 

Table 5.5: The C47SS78A mutation stabilises the dodecamer 

Molecular weight calculations obtained from SAXS analysis suggest that the dodecamer is the 

predominant species, as the average weight is fairly close to that of a dodecamer. It is skewed, 

however, indicating the presence of higher weight complexes. 

 

Dmax 

(Å) 

RG from 

GNOM 

(Å) 

Volum

e 

(Å
3
) 

MW  

(kDa) 

Number 

of dimers 

C47SS78A non-

reduced 206 59 

56200

0 344 

14 

C47SS78A reduced 201 58 

53700

0 331 

14 

Wildtype dodecamer 178 59 
41700

0 
257 12 

 

 

 

The data presented indicate that mutation of CP prevents dodecamer dissociation, 

presumably as the conformational changes associated with oxidation will not occur 
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(section 1.2.4.4). However, a number of factors other than oxidation have been seen to 

encourage changes in oligomeric state without a change in redox conditions (section 

4.3.1.4; Wood et al., 2003). Therefore, a number of other conditions were trialled in 

order to assess the degree of toroid stabilisation. The presence or absence of the his-tag, 

redox conditions, and protein concentration were investigated. None of these factors 

affected the assembly properties of the mutein, with the SEC/SLS elution profile 

unchanged in each case (figure 5.13). This indicates that the mutations have resulted in 

a strikingly consistent distribution of species.  

 

 

Figure 5.13: The C47SS78A mutein shows no environmental sensitivity 

Untagged mutein at 1 mg/mL (dotted line), 5 mg/mL (solid line), reduced (blue line) or tagged 

(dashed line) elutes at a volume that was calculated to represent a ~300 kDa species, with a 

shoulder suggesting a larger ~600 kDa species is present. The dimer seen in the wild type 

sample never appears to be present in the mutant samples.  

 

 

5.4.2.3 Transmission Electron Microscopy  

 

The mutation was predicted to promote stacking of toroids, as the unwinding of helix α2 

contributes to the formation of the stacking interface (section 1.2.5.4). A small peak 

representing HMW species was seen in the RI trace of the C47SS78A, and so TEM was 

carried out to characterise the nature of these structures. As his-tagged mutein showed 

no significant difference in its behaviour in solution to that of untagged mutein (see also 
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appendix seven), this was used for TEM analysis due to the increased ease of 

production. 

 

Initial examination of raw images obtained under non-reducing conditions showed few 

side views of single toroids, with a large number of other morphologies present (figure 

5.14A). A proportion of these particles were comprised of stacks of rings. Single 

particle averaging (SPA) of 3001 negatively stained particles was used to generate 100 

class averages (as for wildtype, section 4.3.1). This revealed that stacks of up to three 

toroids represented a significant percentage of the population (figure 5.14B). Although 

stacks of up to six toroids were seen in micrographs, their absence in class averages 

suggested that they do not comprise a significant percentage of the population. 

Projection averages representing top views do not show clear six-fold symmetry, which 

suggests these are top views of stacked toroids, supporting the absence of single toroids. 

This is in contrast to solution data which indicated that the dodecamer was the 

predominant species, with HMW assemblies accounting for only a small proportion of 

the total population. It is therefore likely that EM grid preparation or conditions favour 

the HMW form. 

 

A striking feature of the mutein micrographs was the presence of morphological 

variants that had not been seen in other samples. Most notably, a percentage of the 

toroids were seen to interlock (figure 5.14A). Furthermore, projection averages that 

match this conformation can be seen in classification, validating their presence in the 

sample (figure 5.14B). Concatenation of Prxs has been reported previously (Cao et al., 

2005), and the agreement with this crystal structure supports that these structures in the 

micrographs are valid, and promoted by the double mutation. Further processing would 

be useful to confirm these structures, and is ongoing. 

 

258



P a g e  | 237 

 

 

A: C47SS78A electron micrograph  B: C47SS78A class averages 

    
 

Figure 5.14: EM analysis of the C47SS78A mutein revealed stacks and interlocked toroids 

A: A typical micrograph of mutein samples shows the presence of stacks of toroids (indicated 

by black arrows), and interlocked toroids (highlighted with black boxes and enlarged). B: 100 

class averages generated from SPA show the presence of stacks and interlocking toroids. The 

lack of clear six-fold symmetry of the top views suggests they result from stacks of two or more 

toroids.  

 

 

 

 

5.4.3 Peroxidase activity of HsPrx3 muteins 

 

Data from other Prxs indicated that altering the quaternary structure can lead to 

differences in the rate of reaction with H2O2, compared to wildtype (Parsonage et al., 

2005). Although the focus of this chapter was to control the self-assembly of HsPrx3 

with a view to designing new tectons (section 1.5), preliminary activity assays were also 

carried out to assess the effect of altering quaternary structure on protein activity. The 

calculated values are shown in table 5.6. The C47S and C47SS78A muteins were not 

assayed as catalysis relies on the C47 residue (section 1.1.2.4). 

 

S78A showed a marked increase in activity, with the rate constant almost 2.5-fold 

higher than that of the wildtype protein (section 4.3.2; figure 5.15A). The mutation is in 
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line with a similar mutation of StAhpC which has been seen to stabilise the decamer, 

and also showed increased activity compared to the wildtype StAhpC (Parsonage et al., 

2005). Both T104W and P48A mutations caused a decrease in activity, by around an 

order of magnitude compared to wildtype (figure 5.15B and 5.15C). The P48A mutein 

favours the dodecameric state, indicating that while dodecamer stabilisation may 

increase activity, maintenance of the active site architecture is vital for correct protein 

function. Although the T104W mutein did not show dramatic differences to wildtype in 

its quaternary structure, the decrease in activity indicates that correct interface formation 

is essential for optimal reaction rates.  

 

 

 

Table 5.6: Muteins showed altered activity rates 

The S78A mutein reacted with H2O2 at a faster rate than wildtype HsPrx3. All other mutations 

caused a decrease in reactivity, with R123G activity not able to be measured.  
 

Mutein Relative activity 

Wildtype HsPrx3 1.1 x 10
7
 M

-1
 s

-1
 

S78A 2.7 x 10
7
 M

-1
 s

-1
 

T104W 0.45 x 10
7
 M

-1
 s

-1
 

P48A 0.4 x 10
7
 M

-1
 s

-1
 

R123G Not calculated 
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A: S78A       

           
B: T104W 

           
C: P48A 

             
D: R123G 

              
Figure 5.15: Activity data suggests all muteins affect protein function 

The S78A mutein showed increased activity compare to the wildtype. All other mutations 
impeded the reaction with H2O2, with the rate of the R123G mutein unable to be measured.  
Error bars indicate standard error. Bar graphs show the formation of Compound I in the 
presence of the specified protein concentrations. This is not shown in the case of R123G as the 
change in absorbance at 403 nm was often negative.  
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The rate constant for R123G was not able to be calculated. The raw data did not show 

any trend, reflected in the activity plot (figure 5.15D). There appeared to be no decrease 

in the production of Compound I (as indicated by the horizontal trend line), suggesting 

HRP is reacting significantly faster than the mutein and making analysis by this assay 

not possible. The recorded data were close to the baseline (section 2.6.1), and in some 

cases below the baseline, yielding negative values. This distorts the deviation within the 

data, resulting in the large errors that were observed (figure 5.15D). Early studies had 

shown this conserved arginine residue to be important for catalytic activity (Kӧnig et 

al., 2003), and during the course of this thesis results were published confirming its 

importance in the specific activity of CP with H2O2 in the case of HsPrx3 (Nagy et al., 

2011). A reduction in activity by five orders of magnitude has previously been seen for 

this mutein compared to wildtype HsPrx3 when measured by stop-flow (Nagy et al., 

2011), supporting the results presented here. High errors are seen in some cases at the 

highest concentrations, possibly due to the amplified effect of small pipetting errors as 

the volumes were small. This is an effect that has been seen previously for this assay 

(Yewdall, 2013, unpublished data). 

 

 

5.5 Discussion 

 

The introduction of mutations to the HsPrx3 monomer gave insight into the mechanism 

behind self-assembly, and the role of the active site in this assembly. Table 5.7 

summarises the effects of the mutations of the protein’s structure and function. 
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Table 5.7: Summary of mutein quaternary structures and activities 

The structure in reducing and non-reducing conditions is described, as well as the activity relative 

to wildtype HsPrx3. 

Mutation Quaternary Structure Relative activity 

 Reducing Conditions Non-reducing 

Conditions 

 

S78A Dodecamer + Dimer HMW + Dodecamer + 

Dimer 
Increased 

T104W Dodecamer + Tetramer Dimer + Tetramer Decreased 

C47S Dodecamer HMW + Dodecamer N/A 

P48A Heterogeneous Mostly Dodecamer Decreased 

R123G Dimer Dimer Inactive 

 

 

 

5.5.1 A-type interface stabilisation may rely on hydrophobic forces 

 

The increased stability of the A-type interface seen in S78A mutein samples is 

consistent with the stabilisation was seen by Parsonage et al., (2005) upon mutation of 

the equivalent residue in StAhpC. The authors do not observe large structural changes at 

the interface despite a significant change in toroid stability, attributing this to the burial 

of an extra methyl group of valine compared to the native threonine. In the case of 

HsPrx3, the energy associated with burial of the more hydrophobic of alanine compared 

to that of the native, polar serine (Monera et al., 1995), and consequent changes in 

packing at the interface must be more favourable than that of the formation of an H-

bond. Hydrophobic packing at the interface may have a larger influence than specific 

interactions, therefore mutations that increase the hydrophobicity of this area and allow 

closer packing could be a successful approach to locking the interface. The T77V 

mutein of StAhpC (Parsonage et al., 2005) was seen to have increased mobility of the 

CP loop region (Nirudodhi et al., 2011). By analogy it was hypothesised that the S78A 

mutein has a similar increase in loop mobility, possibly through prevention of the 

dissociation usually caused by CP loop unfolding forcing the loop to adopt a different 
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conformation. Hyperoxidation has been suggested to drive the formation of HMW 

species (Moon et al., 2005; Jang et al., 2004), though unwinding of helix α2 (Saccoccia 

et al., 2012). Increased mobility of the CP loop in the case of the S78A mutein could 

therefore mimic the hyperoxidised state, resulting in toroid association. Although 

preliminary studies using protocols employed to hyperoxidise other Prxs were trialled 

with HsPrx3 (Cox et al., 2010), no HMW species were seen by TEM and a comparison 

with the S78A HMW species could not be made (further discussed in section 6.4). 

  

The increased activity of this mutein compared to wildtype suggests that the 

stabilisation of the dodecamer promotes the reaction with H2O2, which has been seen in 

similar muteins of other Prxs (Parsonage et al., 2005). However, when dissociation is 

completely prevented with the his-tag, activity is dramatically reduced (section 4.3.2). 

This reveals that simply stabilising the dodecamer does not increase activity, but that the 

ability to switch oligomeric states is required. This has been hypothesised to be a 

compromise, as a stabilised toroid may be more active, be also more susceptible to 

inactivation hyperoxidation (section 1.2.4.5; Wood et al., 2003b). The HMW structures 

of the S78A mutein support this.  

 

5.5.2 Toroid formation relies on the folded CP loop 

 

Encouraging the folded active site through introducing rigidity to the CP loop prevented 

toroid dissociation, as demonstrated by the P48A mutein. The mobility of this loop is 

therefore clearly responsible for the dodecamer to dimer transition. This is supported by 

the R123G mutein which is predicted to have a more mobile CP loop (section 5.2.2.2), 

and is unable to oligomerise. In native Prxs, the conserved P48 closes off one side of the 

active site, and is thought to prevent unwanted reactions (Poole in Banerjee et al., 

2008). When mutated to alanine, the reactive thiolate would be exposed and could be 

protonated by water molecules in the solvent. This could explain the reduced activity of 
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the mutein, as some spurious reactions could occur before the protein can react with 

H2O2, and without reductant in the buffer recycling is not possible (section 1.2.2.3). 

These results provide some support for the theory of the role of this residue (Wood et 

al., 2002), and although the mutein was unstable and therefore not a good candidate for 

further use to develop controlled structures, it provides some insight into approaches to 

lock to the dodecamer through altering CP loop mobility.  

 

5.5.3 Interface mutations may alter toroid geometry 

 

Although it did not have an obvious effect on the dimer-dodecamer equilibrium, the 

T104W mutation may have affected the diameter of the toroid. The MtAhpE A-type 

interface which inspired the mutation exists as part of an octameric oligomer, and could 

adopt a different angle to that in a dodecameric arrangement. Introduction of the T104W 

could lead to stabilisation of the loop regions at the interface, and a shift in interface 

angle to mimic that seen in MtAhpE (see figure 5.3). This shift could result in a 

different toroid diameter to wildtype, and possibly the formation of decamers. The 

structure and sequence of the interface regions are highly conserved across the Prxs, 

with only small sequential discrepancies seen between those that form different 

multimers. This study indicates that the multimeric state may be able to be controlled by 

subtle differences in interface structure. This is an exciting possibility and further study 

of the mutein would be beneficial, particularly processing of the EM data. The 

introduction of mutations to the B-type interface would also be worthwhile, as the 

geometry of this interface has been suggested to be key in determining the multimeric 

state (Gretes and Karplus, 2013). 
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5.5.4 HMW formation relies on the unwinding of the α2 helix 

 

Although the C47S mutation has been considered to mimic the reduced form of the 

enzyme (König et al., 2013), it is more accurately representative of the protonated form, 

as the reduced form still exists as a thiolate ion stabilised by the active site arginine. The 

protonated form of CP would prevail at pH levels below the pKa of cysteine, and in 

these conditions an increased propensity to form HMW structures has been seen in the 

case of some Prxs (Saccoccia et al., 2012; Angelucci et al., 2013). These are when the 

wildtype enzyme is reduced, therefore protonation has been suggested to lead to 

unwinding of helix α2 and concomitant HMW formation. It can be concluded that in the 

case of HsPrx3 mutation of CP to serine increases helix unwinding and stabilisation of 

the toroid and HMW structures, in the same way that protonation does. 

 

The lack of R123 could be expected to result in destabilisation of the thiolate form of 

CP, and, therefore, protonation of CP (Wood et al., 2003). However, the R123G mutein 

showed a different quaternary structure to the C47S mutein. The dimeric nature of the 

R123G mutein could mean that this residue has roles beyond maintaining the active site 

structure. R123 has been suggested to interact with a second conserved arginine residue 

(R146 in HsPrx3; Hall et al., 2010). The sequentially distal nature of these residues 

implies that R123 has significant roles in maintaining a global tertiary structure 

conducive to dimer self-assembly, supported by the oligomeric behaviour of the mutein. 

Comparison with Prxs from the Prx5, TPx or bacterioferritin comigratory protein (BCP) 

family (which are a-typical 2-Cys and 1-Cys Prxs) lends further credence to this theory. 

The more C-terminal arginine is not present in these proteins, and they do not form 

assemblies beyond the dimer (Declercq et al., 2001; D’Ambrosio et al., 2009; reviewed 

in Wood et al., 2003). 

 

The results presented here show that the dimer-dodecamer inter-conversion is a tightly 

regulated phenomenon, requiring the correct global structure of the dimer, a correctly 
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folded active site and appropriate CP loop mobility. Three approaches to prevent 

dodecamer dissociation and encourage HMW structures are presented: (1) Imitate 

protonation of CP; (2) Decrease CP loop mobility; and (3) Imitate hyperoxidation of CP. 

Interestingly, the morphology of the HMW assemblies seen in samples of S78A and 

C47S muteins were dramatically different. It has been suggested that protonation and 

hyperoxidation of CP lead to helix unwinding through different mechanisms (Saccoccia 

et al., 2012). It is proposed that S78A mutein represents a hyperoxidised state, and 

C47S a protonated state, therefore the results presented here support the theory of two 

discrete mechanisms. This also highlights that Prxs may be able to form a number of 

different structures depending of the mechanism of helix unwinding, and presents an 

exciting approach to driving the formation of different structures from one tecton.  

  

It would be useful to test this hypothesis and elucidate the different mechanisms of helix 

unwinding through studying other mutations that cause similar conformational changes. 

The hyperoxidised state could be mimicked through mutation of CP to a residue with an 

increased volume and hydrophilicity, such as aspartic acid. Increasing the propensity of 

α2 helix unwinding without introducing mutations that alter the active site residues 

could help to separate the influence of unwinding, and loss of active site architecture on 

self-assembly. Introducing a helix-disrupting residue such as glycine would be one 

approach, however, this can have a large impact on tertiary structure and may result in 

incorrect folding. The role of R123 could be further by mutating residue R146 residue 

to probe the importance of this interaction. NMR analysis of the S78A mutein could 

indicate whether increased loop mobility is in fact a feature of the stabilised dodecamer, 

and if so, similar interface mutations could be designed to further test this theory. 

Introduction of multiple mutations at the interface may increase the stability further. In 

all cases, crystal structures would be valuable to confirm hypothesised structural 

changes of muteins. 
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5.5.5 Muteins give insight into HMW structure formation 

 

The appearance of concatenated toroids demonstrated the conformational flexibility that 

is present in the Prxs, with individual constructs able to form a number of different 

HMW structures. The agreement with a previously published crystal structure leads to 

the conclusion that this represents a valid assembly. Interestingly, in both cases where 

concatenation has been seen, the proteins contained a mutation of a cysteine residue (the 

resolving cysteine, CR, in the work of Cao et al., [2005]; CP in this work). The disulfide-

bonded dimer of native Prxs forms as the C-terminal arm of one monomer reaches 

across the other, forming a domain swapped dimer (Barranco-Medina, 2009). An 

assembly intermediate has recently been seen, suggesting that the dimers may in fact 

associate while they are still disulfide-bonded (Cao et al., 2011). Without the ability to 

form a disulfide bond, the mutein dimers may have slightly different dimensions, which 

could allow concatenation as they begin to associate into the toroid. 

 

5.5.6 Summary and outlook 

 

Despite the well-known concept that protein structure is linked to function, in many 

cases the precise relationship remains unknown (for example, Devenish and Gerrard, 

2009). Prxs are a striking example of the complex nature of this relationship; although 

there is a correlation between the oxidation state of CP and quaternary structure, the 

exact causality is unclear. Furthermore, in a family which shows such high 

conservation, a surprising number of individuals exist which appear to contradict any 

conclusions which are drawn. For example, in some cases dimers can form about a 

redox-insensitive A-type interface (Li et al., 2005, Mizohata et al., to be published, 

[PDB ID: 2CX4] and Ebihara et al., to be published [PDB ID: 2YWN]). The factors that 

control Prx quaternary structure remain unclear, as are the physiological implications of 
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the varying dimensions of toroids. This works reveals that single residues have 

significant contributions to the structure and function of Prxs, and provides some 

important structural insights into the subtleties that govern the formation, and 

potentially size, of Prx toroids. The dramatic effect that single residue mutations can 

induce reveal that Prx self-assembly is finely tuned, and under tight control within the 

cell.  

 

This study revealed that in the case of HsPrx3, mutation of single residues that 

contribute to active site architecture can dramatically alter the oligomeric properties. It 

is concluded that the controlled folding and unfolding of the CP loop is the force behind 

dimer assembly and disassembly, and the unwinding of the α2 helix drives HMW 

formation. The activities of the muteins compared to his-tagged wildtype revealed that 

the mobility of the CP loop and helix α2 were more important for the high reactivity of 

HsPrx3 than influencing the dimer-dodecamer equilibrium. Increasing the mobility of 

the CP loop without disrupting the active site could be a means to promote peroxidase 

activity. This could provide a useful avenue to study Prxs in a biomedical realm, though 

was not addressed in this work which focussed instead on controlling the self-assembly 

properties of the protein.  

 

Through the rational design of mutations, and the work presented in chapter four, a set 

of non-native structures have been generated which successfully lock the toroid (his-

tagged HsPrx3), disrupt the toroid (R123G), and potentially alter toroid dimensions 

(T104W). The C47S and P48A muteins highlighted prospective avenues toward 

engineering HMW structures, which were explored through the generation of the 

C47SS78A double mutein. Various HMW organisations were seen to be accessible to 

HsPrx3, and it is proposed that a number of discrete mechanisms exist for high weight 

assembly, which may be driven by different factors. This supports the early theory by 

Jang et al. (2004) who suggested that toroid association may occur through either an 

H2O2-dependent, or an H2O2-independent mechanism, which could be explained by 

Saccoccia’s theory (Saccoccia et al. 2012) that protonation and hyperoxidation cause 
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assembly through different routes. The different high weight arrangements of the S78A 

and C47SS78A muteins support this theory, and highlight the possibility that, through 

minor alterations to primary structure, HsPrx3 molecules can be driven to form different 

supramolecular structures.  

 

This chapter presents a promising start to controlling the dimer-dodecamer switch of 

HsPrx3, and HMW structures. Further in depth analysis of the larger structures could 

reveal more details regarding the interactions and factors that contribute to their 

stabilisation, which would allow further modification of subunits and a greater level of 

control. From this, a set of novel subunits could be designed, that assemble into a 

variety of structures in response to environmental triggers. 
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Chapter 6 Engineering HMW structures of HsPrx3 

 

6.1 Introduction 

 

In this chapter, a careful analysis of the literature is presented; focussing on published 

structures of HMW forms of Prxs (section 6.2.1). This provided some suggestions of the 

factors which control the formation of these assemblies. Previous work detailed in 

chapter four gave insight into the mechanisms behind HsPrx3 assembly, and chapter 

five highlighted the potential to control the quaternary structure through subtle changes 

to the primary structure. Preliminary analysis of HsPrx3 had indicated that the toroids 

may be able to associate into HMW assemblies when the his-tag is attached. As Prxs are 

able to form a wide range of HMW assemblies (section 1.2.5.3), the 3D structure of the 

HMW form of his-tagged HsPrx3 was analysed. Building on these results, the 

possibility to drive native HsPrx3 toroids to assemble into large structures by altering 

environmental conditions was investigated. A clear understanding of the conditions that 

regulate the formation and size of these structures is lacking, and the results presented 

here provide some insight. Electron microscopy was used to analyse the interactions 

involved, and provides the first high resolution information on these assemblies. 

 

 

6.2 Toroid stacking occurs in response to a number of factors 

 

6.2.1 Analysis of the literature 

 

A number of groups have reported the presence of stacks of toroids in Prx preparations, 

with organisations ranging from small assemblies of two or three toroids, to nanotubes 
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of various lengths (Kato, 1985; Cao et al., 2007; Gourlay et al., 2003). The 

antiapoptotic roles of Prx, and their upregulation and aggregation in response to cellular 

stress imply biomedical implications (Jang et al., 2004). Published HMW structures 

have been obtained using mutated or modified Prx constructs, or samples spiked with 

metal ions (discussed in section 1.2.5.3). This leads to the question of whether these 

assemblies are physiologically relevant, or even possible in vivo, or if they are in vitro 

artefacts.  

 

The work of Harris (1969) suggests in vivo significance, as similar stacks were observed 

in native Prx2 from erythrocyte extracts. In this case, protein was extracted from the 

membrane fraction of erythrocyte preparations. Prx2 is known to associate with 

membranes when hyperoxidised (Cha et al., 2000), and immunostaining has revealed 

that Prx2 appears to assemble into long filaments in cells that are exposed to oxidative 

stress (Phalen et al., 2006). It is therefore possible that the authors had preferentially 

selected for the hyperoxidised form of the protein, which were prone to assembling into 

HMW structures.   

 

Although previous studies do not present a clear trend between conditions and the 

resultant structures formed, some common factors can be identified when the 

permutations in the purification protocol are considered. Table 6.1 details the HMW 

structures currently published, and the conditions in which they were observed. A 

notable feature is the presence of a his-tag in many of the structures. This has been seen 

to promote the formation of HMW structures and may suggest that these are not native 

arrangements of the proteins (section 4.3.1.3). 
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Table 6.1: Published structures of HMW are obtained from modified constructs 

Comparison of preparative methods which have resulted in Prx HMW formation provides 

insight into the mechanism behind toroid stacking. A notable feature of the publications which 

report HMW forms of Prxs is the presence of a his-tag.  

 

 
 

 

6.2.2 The R-type interface 

 

The recent crystal structure containing two stacked toroids of SmPrx1 gave some insight 

into the interactions involved in the R-type interface (Saccoccia et al., 2012; discussed 

in section 1.2.5.4). This crystal structure provides some explanation for earlier 

observations of Prx HMW assemblies. When hyperoxidised, the increased volume of 

CP-SO2H or CP-SO3H may favour the movement of CP out of the active site pocket, 

similar to what is seen to occur at low pH (Saccoccia et al., 2012), and allowing the R-

type interface interactions to occur. This is supported by the crystal structure of a 

hyperoxidised Prx, where unwinding of helix α2 is observed (section 1.2.4.3; Jönsson et 

al., 2008), and could also provide an explanation for the stacks seen by Harris (1969).  

 

Mutation of CP is likely to cause similar rearrangements as hyperoxidation. In both 

cases the integrity of the active site is no longer maintained (section 5.2.2.2), which 
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could explain the increase in the size of the tubes recorded by when this residue is 

mutated (Gourlay et al., 2003). Recent crystal structures and solution data of SmPrx1 

(Angelucci et al., 2013) confirm that mutation of CP leads to unfolding of the α2 helix, 

which encourages R-type interface formation.  

 

Many Trx fold proteins contain a conserved proline residue, but in the case of Prxs it is 

replaced by an arginine (R123 in the case of HsPrx3). When the proline of a Trx protein 

is mutated to an arginine to mimic the Prx structure, the Trx proteins are able to 

coordinate an Fe2S2 cluster (Su et al., 2007). This led to the theory that the proline exists 

to prevent metal binding at the thiolate-based active site. The absence of this residue in 

the similar active site of Prxs strongly suggests that they may accommodate metal ions 

in their active sites, supported by some crystal structures (Wood et al., 2002; Choi et al., 

1998). This possible binding of metal ions would likely alter the interactions that 

maintain the correct architecture, leading to movement of CP and concomitant 

rearrangements to allow the R-type interface formation. This could explain the 

formation of Prx tubes in the presence of magnesium as seen by Kato et al., as well as 

the dissociation of the tubes upon addition of chelating agents (Kato et al., 1985). 

 

To conclude, the literature indicates that the primary factor influencing the stacking of 

untagged Prx toroids is the movement of CP out of the active site, either through loss of 

stabilising interactions, or disruption by bulky groups or metal ions. This provides a 

testable hypothesis, and an approach to drive the formation of Prx stacks in a controlled 

manner.  
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6.2.3 His-tagged HsPrx3 forms stacks of toroids 

 

Preliminary studies of his-tagged HsPrx3 indicated that the protein forms a stable 

dodecamer, with small amounts of HMW species observed, appearing to be ~470 kDa 

(section 4.3.1.3). TEM was used to elucidate structural differences between native and 

his-samples. Comparison of fields of views revealed striking structural differences that 

appear to be introduced by the his-tag (figure 6.1A). Some side views of single his-

tagged toroids were seen; however, the majority of the particles showed higher 

quaternary states. Stacks of up to four toroids were apparent in his-tagged samples, 

which were not seen in untagged samples. 6850 His-tagged particles were automatically 

selected and subjected to SPA. Reference-free image classification in EMAN was used 

to group the raw projections into 100 classes (figure 6.1B; Ludtke et al., 1999; section 

2.4.5.2).  

 

The class averages obtained confirmed that stacks of up to four toroids represent a 

significant percentage of the population. Particle averaging gave a clear picture of the 

stacks, with contacts occurring at discrete points, resulting in large gaps between the 

toroids. Side views of single toroids were notably absent from class averages, indicating 

that they represent a very small percentage of the total population. Large assemblies 

appear more abundant in the TEM images than in solution. Although automatic particle 

picking was supervised, it is possible that stacked toroids are more readily selected by 

the routine than single side views. Quantification of the number of stacked species 

observed by TEM could also be complicated by the possibility that different species 

may vary in their propensity to attach to the carbon substrate. Mindful of this caveat, an 

approximation of the populations present for wildtype protein, with and without the tag 

was determined through manual examination. Three electron micrographs of untagged 

HsPrx3 and tagged HsPrx3 were selected for manual particle picking (figure 6.2), which 

demonstrated that the population is markedly shifted towards stacks by the presence of a 

his-tag.  
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Under reducing conditions, the only observed species of untagged HsPrx3 were single 

toroids, comprising 100% of the particles that were manually counted. In tagged 

samples, under both non-reducing and reducing conditions, the proportion of single 

toroids was determined to be less than 1% of the population, while double toroids 

accounted for the majority (>90%). The proportion of stacks with three or more toroids 

was <10%.  

 

 
A: Electron micrograph       B: Class averages 

   

Figure 6.1: His-tagged HsPrx3 forms stacks of toroids 

A: Electron micrographs revealed the presence of stacks of up to four toroids. No stacks or 

single toroids were seen in micrographs of HsPrx3 in identical (non-reducing) conditions (data 

not shown) B: Single particle analysis yielded class averages that showed clear representations 

of the stacked toroids. Stacks of up to three represented a considerable proportion of the his-

tagged HsPrx3 sample. The right hand panel shows an enlargement of selected projection 

averages. 
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Figure 6.2: Histogram representing the relative proportions of structures in wildtype 

constructs 

Percentages were calculated from manually counting particles across three micrographs. A 

single micrograph typically contained ~500 particles. The distributions show that wildtype 

HsPrx3 exists almost completely as single toroids, whereas the his-tagged protein favours a 

double toroid structure. Non-reduced wildtype showed no oligomeric structures.    
 

 

 

6.3.2 3D TEM reconstruction of the double toroid stacks 

 

A 3D reconstruction was produced in collaboration with Dr. Mazdak Radjainia at the 

University of Auckland (as for the single toroid, section 4.3.1), and gave modest 

resolution (21 Å) structural information (section 2.5.4.2). Although precise atomic 

arrangements were not discernable, the reconstruction has sufficient detail for atomic 

structures to be docked, to yield pseudo-atomic resolution models. Two toroids were 

clear, with the density envelope indicating contact between them (figure 6.3A). 

Overlaying the reconstruction with the crystal structure of BtPrx3 (Cao et al., 2005; 
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figure B) showed significant additional density on the inner face of the toroids, which 

was not apparent in the 3D reconstruction of the untagged toroid (section 4.3.1). It is 

plausible that the additional densities correspond to the N-terminal region and his-tag, 

which are not resolved in the crystal structure (Cao et al., 2005). This suggests that the 

N-terminal region and his-tag could adopt an ordered conformation in the stacked 

toroids and stabilise the dodecamer through coordination of metal ions in the lumen of 

the toroid (section 4.3.1.3). In general, the EM density map and the crystal structure of 

the BtPrx3 toroid agree well, with top views showing matching protrusions in the toroid 

(figure 6.3B). However, some areas of misalignment are seen, hinting at conformational 

changes within the stacked HsPrx3 toroids. Notably, the α2 and α6 helices of the BtPrx3 

structure appear to project into the gap between the toroids of the HsPrx3 

reconstruction. The dimers have adopted a different arrangement in the stack, forming a 

less acute angle to each other (figure 6.3B). This is consistent with the change in angle 

of the B-type interface seen in the crystal structure of the stacked toroids of SmPrx1 

(section 1.2.5.4; Saccoccia et al., 2012).  

 

The two stacked decamers that were solved in the crystal structure of the SmPrx1 HMW 

species (Saccoccia et al., 2012) are rotated by 18° around the five-fold symmetry axis – 

a rotation caused by conformational changes of secondary structure elements, which 

allow the necessary interactions for stacking to occur. A similar pitch appears to be 

present in the 3D structure of his-tagged HsPrx3, as judged by the lack of symmetry 

between toroids (figure 6.3A). The reconstruction of stacked HsPrx3 also shows a 

similar height to that of the SmPrx1 stack – around 8 nm at the farthest points, 

indicating that the toroids assemble in a similar manner.  
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A: His-tagged HsPrx3          B: Docked BtPrx3 dodecamers       C: Docked SmPrx1 stack 

 
 

Figure 6.3: The 3D reconstruction of HsPrx3 stacks suggests a conserved mechanism 

A: 3D reconstruction of two stacked HsPrx3 toroids shows that contact between the dodecamers 

appears to result in rotation of the toroids relative to each other. The gaps seen in side-on views 

are likely caused by contributions to the interface being made only by one monomer of each 

dimer. B: The crystal structures of two BtPrx3 toroids (PDB accession number: 1ZYE) were 

individually docked into the reconstruction (the pink toroid was docked to the top of the stack, 

cyan to the bottom). The top view shows good agreement, the position of the N-terminus is 

circled for one monomer, which agrees with the additional density seen in the reconstruction. 

The side view shows misalignment (only one dimer from each toroid is shown for clarity), with 

helices of the crystal structure projecting above and below the toroids of the reconstruction. C: 

The crystal structure of stacked decameric SmPrx1 (PDB accession number: 3ZVJ) was docked 

into the 3D reconstruction. The top view showed misalignment due to the difference in toroid 

diameter, therefore only two dimers are shown. The shifted α6 and α2 helices that contribute to 

the interface (indicated) align well with the regions of contact between the toroids of the 

reconstruction. 

 

 

 

To identify gross conformational changes, and ascertain whether the mode of stacking 

that is seen in SmPrx1 is present in the HsPrx3 HMW species, the SmPrx1 HMW 

(Saccoccia et al., 2012) crystal structure was docked into the EM reconstruction. The 

entire double toroid was docked as one object, then all chains except two dimers are 
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hidden for clarity (figure 6.3C). Although a perfect fit could not be expected because of 

the decameric nature of the toroid of SmPrx1, the regions of contact between the toroids 

in the two proteins align very well. The shifted α6 and α2 helices of SmPrx1 correspond 

to the electron density between the toroids of the HsPrx3 reconstruction, indicating that 

SmPrx1 and HsPrx3 toroids can assemble via a conserved mechanism, despite the 

difference in multimeric states of toroids. 

 

Three of the four residues proposed to be involved in the interface are conserved in 

HsPrx3 (E20, K22 and H164; Saccoccia et al., 2012), implying that these interactions 

are specifically required to optimise the electrostatic stabilisation of the stacked toroids. 

The interaction of these residues at the α6 and α2 helices of alternate monomers is 

consistent with the large gap that can be seen between toroids in the class averages and 

3D model, suggesting that HsPrx3 toroids are able to form equivalent interactions to 

those seen in SmPrx1. It therefore appears plausible that the conformational changes of 

secondary structure elements that were observed in SmPrx1 may be conserved in 

HsPrx3, involving the unwinding of helix α2.  

 

 

6.4 Generating nanotubes of controllable length 

 

The antiparallel association of dimers results in a symmetric toroid, with equivalent top 

and bottom faces. It is therefore unclear why the conditions discussed above appeared to 

encourage the R-type formation, though they resulted in small, fairly uniform stack 

sizes. It is possible that small stacks are the most energetically favourable conformation, 

and could be that the his-tags coordinate to the metal ions within the lumen of the 

stacks, in a manner that favours an assembly of two toroids. The mechanism of his-tag 

coordination to nickel ions is not completely understood, but there are several possible 

arrangements (Valenti et al., 2006). It may be that the most favourable coordination of 

his-tags to nickel ions corresponds to two toroids. Further investigation would be useful 
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to unravel the nature of this interaction, which is clearly an important factor in Prx 

assembly, but until now disregarded. 

 

A number of approaches were trialled in order to generate large assemblies of HsPrx3. 

Metal ions have been reported encourage the formation of large assemblies of toroids 

(Kato et al., 1985); however, the addition of metal salts (including MgCl2, NiCl2, and 

CdCl2) to untagged HsPrx3 samples were inconclusive. Aggregation occurred easily, 

and when the concentration of metal salts was sufficiently low to avoid aggregation, no 

larger structures were seen by TEM (data not shown). Hyperoxidation has also been 

suggested to cause HMW formation (Moon et al., 2005). This was attempted with 

HsPrx3 using protocols that have been successful for other Prxs (Pace et al., 2013). 

However, TEM analysis again revealed that HMW structures were not present. Despite 

containing the motifs that confer hyperoxidation sensitivity (section 1.2.5), HsPrx3 is 

somewhat resistant to hyperoxidation in vitro (Haynes et al., 2013), so it is possible that 

hyperoxidation was not actually achieved in this work. Further studies of this state of 

HsPrx3 using MS or antibodies to identify whether hyperoxidation has been successful 

could be valuable.  

 

 

6.4.1 Acid pH leads to toroid association 

 

Given the in vitro resistance of HsPrx3, mimicking the effects of hyperoxidation by 

altering environmental conditions was considered. Disruption of the C47-R123 ionic 

bond through mutation encouraged the R-type interface to form (section 5.4.1); 

therefore, disrupting this interaction through altered pH was trialled. The pKa of CP in 

Prxs is around 6.0 (Nelson et al., 2008; Ogusucu et al., 2007). Lowering the pH below 

this was hypothesised to disrupt the active site architecture, and low pH has been 

suggested to mimic the effects of hyperoxidation (Saccoccia et al., 2012). This was 

investigated in the case of HsPrx3. 
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TEM was utilised to investigate HMW structures. Altering solution pH within a 

physiologically relevant range was seen to affect the oligomeric state of HsPrx3 (section 

4.3.1.4). As the focus of this study was to drive the formation of novel structures, pH 

levels outside of these ranges were explored. Protein samples were dialysed into a 

buffer at the appropriate pH (standard running buffer [section 2.1.9.2] was adjusted with 

HCl). Previous studies of the effect of solution pH had indicated greater formation of 

HMW species at pH 7.0 (section 4.3.1.4), and TEM analysis revealed that these 

structures were laterally associated toroids that appeared to form chains (figure 6.4B). 

Side views of single toroids were observed, consistent with SEC/SLS which indicated 

that the primary species in these conditions was the dodecamer (section 4.3.1.4). This 

was reproducible, indicating that the association was not random, supporting previous 

reports (Meissner et al., 2007). Electrostatic interactions such as those predicted to 

stabilise the R-type interface (described above) are sensitive to solution pH, relying on 

the charge of side groups. As lysine residues are charged at physiological pH (pKa is 

~10), increasing the protonation and, therefore, charge of the histidine at the interface 

was hypothesised to encourage stacking. Following this rationale, lowering the pH 

below the pKa of histidine to 6.0 was examined (in its environment in the Prx monomer 

the histidine is thought to have a slightly higher pKa than its usual value ~ 6 [Saccoccia 

et al., 2012]). This led to a dramatic change in the structures observed by TEM (figure 

6.4C). Large stacks of >10 toroids were observed, indicating that formation of the R-

type interface was more favourable at this pH. These stacks were very heterogeneous 

and irregular, with varying lengths, and clear breaks being seen.  
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A: pH 8.0       B: pH 7.0 

 

C: pH 6.0                       D: pH 4.0 

 

Figure 6.4: Toroid association occurs in response to pH 

A: Untagged wildtype HsPrx3 at 0.05 mg/mL exists as single toroids indicated by dumb-bell 

shapes. B: At pH 7.0 toroids appear to associate side by side, with a number of chain-like 

arrangements seen. C: At pH 6.0 large, irregular stacks are seen. D: At 0.1 mg/mL at pH 4.0 

strikingly ordered nanotubes are seen. Scale bars indicate 100 nm. 
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It has been suggested that the R-type interface is stabilised by H-bonds as well as 

electrostatic interactions between the key residues mentioned above (Saccoccia et al., 

2012). It was therefore hypothesised that lowering the pH below the pKa of all residues 

thought to be involved may further stabilise the toroid stacks. Glutamic acid has the 

lowest pKa of 4.2; therefore a pH of 4.0 was examined. TEM revealed the presence of 

strikingly ordered nanotubes composed of stacked toroids, up to 400 nm in length 

(figure 6.4D). Lowering the pH has been suggested to encourage the movement of the 

α6 helix to enable the R-type interface interactions to occur in the case of a decameric 

Prx (section 1.2.5.4). These results indicate that the mechanism is conserved in the 

dodecameric HsPrx3. It appears that length and uniformity do not increase with lowered 

pH, as samples at pH 5.5, 5.0 and 4.5 behaved identically to pH 6.0. Rather, pH 4.0 

appears to be the critical point at which toroid stacking is favoured. Dialysis of the 

acidified sample to a higher pH caused the tubes to dissociate into toroids (data not 

shown). 

 

 

6.4.2 Controlling nanotube length 

 

Very recently, a crystal structure of the CP mutein of the decameric SmPrx1 was 

published (Angelucci et al., 2013). Although this crystallised as a single dodecamer it 

was seen to aggregate easily in solution. The authors increased the solubility by 

including ammonium sulfate ([NH4]2SO4) in their buffers. Despite the CP mutation, the 

active sites remain in the fully folded conformation. This may be due to a sulfate ion 

binding in the active site and making polar contacts with the serine (mutated CP) and 

conserved arginine of the catalytic triad. It was hypothesised that sulfate ions may 

stabilise the active site of HsPrx3 in a similar way and therefore restrict tube length. 
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Protein samples were dialysed into a buffer containing 100 mM, 200 mM or 400 mM 

(NH4]2SO4) at pH 4.0. Electron micrographs revealed that ammonium sulfate did cause 

a decrease in nanotube length, in a concentration dependent manner (figure 6.5). Simply 

changing the ionic strength by altering the NaCl concentration of the buffer had no 

effect on nanotube length. Similarly, adding sulfate ions to the sample at pH 8.0 had no 

effect on morphology. This strongly suggests that sulfate ions specifically inhibit tube 

formation; potentially by binding to the unfolded active site, encouraging transition to a 

folded conformation and therefore preventing the toroids associating. Even at the 

highest sulfate concentration, nanotube formation was not completely inhibited, as was 

seen for the SmPrx1 HMW species. This may be due to the CP to S mutation of SmPrx1 

– the increased electronegativity of the oxygen in the side chain (compared to sulfur of 

cysteine) could increase the strength of polar interactions with the sulfate ion. In the 

case of HsPrx3 weaker binding could lead to a higher instance of unfolded active sites, 

and therefore stacking would be facilitated. As this effect is not seen with other ions, a 

useful future study would be to examine the effect of nanotube formation in a pH 4.0 

phosphate buffer as the phosphate anion has similar properties to that of sulfate. 

Preliminary studies in the Gerrard laboratory (Littlejohn, Master’s thesis) indicate that 

the dodecameric state of HsPrx3 is indeed stabilised when the protein is in a phosphate 

buffer. This suggests that the phosphate anion may be binding in the active site, 

preventing the transition to the locally unfolded state and, therefore, toroid dissociation 

upon oxidation. 
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A: 100 mM (NH4)2SO4    B: 200 mM (NH4)2SO4      C: 400 mM (NH4)2SO4  

 
 
Figure 6.5: The presence of sulfate ions influences nanotube length 

Samples of untagged HsPrx3 at pH 4.0 dialysed into: A: 100 mM sulfate, B: 200 mM sulfate 

and C: 400 mM sulfate decreased in length in response to the increasing sulfate ion 

concentration.   

 

 

 

6.4.3 3D cryo-electron microscopy structure of the nanotubes 

 

Cryo-electron microscopy (cryo-EM) was used to examine the nanotubes in native 

conditions, and to provide higher resolution data. For cryo-EM, the sample was applied 

to Quantifoil® holey grids and rapidly frozen in liquid ethane using a FEI Vitrobot
TM

 

Mark IV. The sample is therefore maintained in a thin film of the vitrified sample 

buffer, in a frozen hydrated state, allowing examination without the potential for 

interactions with the support film or artefacts of negative staining, and giving a close-to-

native representation of protein structure in solution. Initial examination of micrographs 

revealed the presence of ordered nanotubes with an average length ~300 nm (±100 nm; 

figure 6.6). Negatively-stained samples sometime showed defects in the tubes, seen as 

bends or apparent misalignment of toroids. These were not seen in cryo-EM and so 

were concluded to be an artefact of adhesion to the grid or heavy metal stain. Cryo-EM 

specimen preparation and freezing was carried out by Dr. Mazdak Radjainia at the 

University of Auckland. 
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Generation of a 3D reconstruction was carried out by Dr. Hariprasad Venugopal at the 

University of Auckland. Manually picked tubes were subjected to real space helical 

reconstruction using Bsoft (Heymann and Belnap, 2007). This resulted in a 

reconstruction with a resolution estimated to be 10 – 15 Å and significantly improved 

the resolvable structural details compared to negative stain reconstructions (figure 

6.7A). This resolution is close to resolving secondary features. Inspection of the 

reconstruction indicated precise, discrete areas of contact between the toroids. The cryo-

EM reconstruction of the nanotubes of untagged HsPrx3 revealed a striking difference 

compared to the 3D reconstruction of the his-tagged stacked toroids. This is 

characterised by a lack of rotation between the toroids that make up the untagged 

protein nanotubes (figure 6.7). This finding suggests that the stacking mode is different 

between the stacks promoted by his-tags compared to tubes triggered by low pH.  

 

 

 

Figure 6.6: Cryo-EM revealed straight nanotubes exist in solution 

Strikingly ordered stacks of HsPrx3 toroids were seen by cryo-EM, forming tubes up to 400 nm. 
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A: Untagged HsPrx3 stack     B: His-tagged HsPrx3 stack 

 

 
Figure 6.7: 3D reconstructions indicate differences in assembly mechanisms between tagged 

and untagged HsPrx3 toroids 

A: 3D reconstruction generated from cryo-EM data of untagged HsPrx3 molecules shows that 

the points of contact between toroids align laterally along the nanotube, resulting in symmetry 

between the toroids. B: The lack of symmetry between his-tagged toroids is due to a rotation, 

meaning points of contact do not align. The structure of four stacked toroids was generated by 

overlaying three of the 3D reconstructions of double toroids discussed in section 6.3.1. 

 

 

 

The crystal structures of the BtPrx3 dodecamer and the SmPrx1 double decamer were 

docked into the cryo-EM 3D reconstruction to provide some insight into the mechanism 

behind nanotube formation. Both structures were docked as in section 6.3.1. When the 

SmPrx1 HMW structure was docked, the fit was surprisingly poor (figure 6.8A). The 

interdigitated helices of the SmPrx1 R-type interface did not align with the regions of 

contact between the HsPrx3 toroids. This is consistent with the theory that the HsPrx3 

nanotubes are composed of toroids that do not stack with a rotation relative to each 

other. This is supported by docking two separate BtPrx3 toroids – the structures dock 

well into the reconstruction, and inspection of the alignment reveals they are stacked 

without rotation (figure 6.8A).  
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Docking of the BtPrx3 tertiary structure gave some insight into the tertiary structure 

changes associated with nanotube formation. In some areas it is possible to see very 

good alignment, with density corresponding to individual helices apparent. In the 

reconstruction (figure 6.8B), it is possible to see the kink in helix α2 in the EM map, for 

example, with conformational changes suggested by the regions that are misaligned. 

Particularly, the α2 helix and β1-β2 hairpin regions of the crystal structure project 

beyond the density seen in the reconstruction, which is in agreement with the suggestion 

of Saccoccia et al. (2012), who highlighted this region to be important in forming the R-

type interface. The generation of the reconstruction from cryo-EM data means that any 

staining artefacts are eliminated. Therefore, speculations can be made in good 

confidence that the differential alignment to the crystal structure is due to 

conformational changes that facilitate toroid stacking. From this reconstruction it can be 

proposed that the unwinding of the CP loop due to low pH results in movement of the α2 

helix through a slipping of the B-type interface that reorients the dimers. The α2 and α6 

helices contact those of the dimer above in a “tip to tip” fashion rather than the 

interdigitation seen in SmPrx1 (Saccoccia et al., 2012). The β1-β2 hairpin is shifted 

through the movement of the dimers; however, due to the lack of rotation in the 

untagged structure it seems unlikely that this will make the contacts with the monomer 

above as seen in SmPrx1 (described in 1.2.5.4; Saccoccia et al., 2012). 
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A: Docked with SmPrx1 HMW structure         B: Docked with BtPrx3 dodecamer 

 

C: Top view of dock with BtPrx3 dodecamer 

 
 
Figure 6.8: Docking the 3D reconstruction with crystal structures gave insight into the 

assembly mechanism 

A: The SmPrx1 HMW structure (Saccoccia et al., 2012) aligned poorly, most notable, the 
interdigitated arrangement of the α2 and α6 helices of the crystal structure did not fit well with 
the EM density map. B: Docking two BtPrx3 toroids suggested that the toroids may stack 
directly on top of each other, without the rotation seen in the SmPrx1 HMW species. 
Misalignment of the β1-β2 hairpin suggests rearrangements occur in this region to facilitate 
stacking. C: Top views of the docking with the BtPrx3 toroid show a good dock, with clues to 
conformational changes. Notably, the α2 helices and β1-β2 hairpins of the monomers in the 
crystal structure project outside of the density seen by EM.  
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6.5 Discussion 

 

The data presented in this chapter and chapter five reveal that a number of discrete 

HMW structures are accessible to HsPrx3, and controllable through the introduction of 

affinity tags, mutations, or alterations to environmental conditions. Protein tubes and 

cages have potential uses in bionanotechnology (section 1.5), therefore an increased 

understanding and greater level of control over their formation was sought. The recent 

publication of the double toroid produced by sample acidification (Saccoccia et al., 

2012) provided valuable insight to approach driving HsPrx3 to form HMW structures. 

Larger stacks, and finally long nanotubes were successfully generated, for which two 

mechanisms of formation are presented: his-tag mediated assembly, and stacking in 

response to acidification. The clear differences of the HsPrx3 untagged nanotube 

structure to the tagged stacked toroids of SmPrx1 lead to the proposal that these 

assembly mechanisms involve different routes, and possibly different interactions.  

 

 

6.5.1 His-tag mediated assembly 

 

The EM structure presented here agrees well with the suggestion of Saccoccia et al. that 

assembly involves contact between the α2 and α6 helices of dimers, even when his-

tagged HsPrx3 is studied at pH 8.0. In the case of HsPrx3, acidification of his-tagged 

samples eliminated HMW species, presumed to be due to electrostatic repulsion of the 

protonated histidine residues. The major species of acidified, tagged SmPrx1 in solution 

is in fact the dimer, with small amounts of HMW structures present (Saccoccia et al., 

2012). It may be that SmPrx1 exists in equilibrium, with opposing forces of protonated 

his-tag repulsion and the formation of pH-induced R-type interface interactions 
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resulting in a heterogeneous sample, with the HMW species promoted by 

crystallisation.  

 

 

6.5.2 Low pH induced assembly 

 

Acidification resulted in a significant increase in stack size, with high resolution 

structures revealing a different assembly mechanism to that of his-tag stacking. Toroids 

align directly above each other, and although the rotation seen in the crystal structure of 

Saccoccia et al. is not seen, equivalent regions appear to be involved in interface 

formation. Alignment with the BtPrx3 toroid indicated that the HsPrx3 dimers have 

shifted to form the nanotubes, possibly involving a slip at the B-type interface. This is 

consistent with the conformational changes proposed to be induced by low pH by 

Saccoccia et al. The agreement of the tertiary structure changes of acidified SmPrx1 

with the HsPrx3 nanotubes, but gross morphology of SmPrx1 being more similar to the 

HsPrx3 his-tagged stacks, may suggest that the local conformational changes are 

induced by low pH, but rotated stacking of the SmPrx1 toroids is in fact driven by the 

his-tag or crystal packing. 

 

Angelucci et al. (2013) suggest that CP loop unwinding is not sufficient to cause toroid 

stacking, and the results presented here lend some credence to that hypothesis. At pH 

6.0 the peroxidatic cysteine is protonated, the stabilising C47-R123 bond therefore 

disrupted, and (according to the structural data presented by Saccoccia et al., 2012), the 

CP loop and helix α2 would unwind and the active site architecture would be lost. In the 

case of HsPrx3 this is sufficient for stacking, but results in nanotubes of modest length. 

Only when the pH is lowered to 4.0 are the stable, ordered nanotubes seen, indicating 

that other factors are involved. This level of acidification could be expected to affect 

many parts of the tertiary structure so it may be that further conformational changes 
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promote the R-type interface, or it could be through the encouragement of polar 

interactions in this region (as hypothesised in section 6.4.1). Crystal structures of the 

tagged, untagged and untagged acidified protein could provide some support to these 

suggestions.  

 

 

6.5.3 Control of the length of the nanotubes 

 

Although the samples were not completely uniform, the addition of varying 

concentrations of ammonium sulfate allowed some control over nanotube length. The 

crystal structure of the SmPrx1 CP mutein provides some explanation for this effect. The 

authors attribute the single decamer conformation of this mutein to a requirement for 

further conformational change than the unfolding of the α2 helix. Together with the 

C47SS78A mutein data presented in chapter five (section 5.4.1), and the stacking of 

HsPrx3 at pH 6.0, this suggests that the conformational changes associated with 

mutation are sufficient for HMW formation. In solution the SmPrx1 CP mutein is prone 

to aggregation unless ammonium sulfate as included in the buffer (Angelucci et al., 

2013). In the crystal structure of SmPrx1-C48S, SO4
2- 

ions are present in the active site, 

holding the helix in a folded conformation. Together with the reduction in nanotube 

length seen when HsPrx3 is acidified in the presence of sulfate ions, this indicates that 

SO4
2- 

ions that impede toroid stacking. It is proposed, therefore, that α2 helix unwinding 

is primarily responsible and sufficient for HMW formation. 

 

Coordination of the his-tags to metal ions in solution may cause aggregation of the tags, 

rather than assembly being driven by the formation of protein-protein interfaces. It is 

hypothesised that the stacks seen in the first part of this chapter, and in many cases in 

the literature, are an artefact of the his-tag. This is a significant result, as the presence of 

a his-tag is generally not considered when Prx quaternary structures  are studied (for 

example, Cao et al., 2005; Saccoccia et al., 2012); this study highlights that it can 
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stabilise particular conformations (section 4.3.1.3), and even lead to the formation of 

non-native structures (section 6.3.1).  

 

 

6.5.4 Conclusion 

 

This work confirms that the R-type interface plays the dominant role in higher order 

assemblies of HsPrx3, and provides important structural information relating to the 

process of self-assembly. The presence of a his-tag has been seen in this study and by 

other groups (Cao et al., 2007) to stabilise oligomeric forms of Prxs and therefore 

influence their natural self-assembly, but until now has received no attention when 

analysing HMW structures. This study indicates that some of the structures seen in 

preparations of recombinant Prxs may in fact be artefacts of the affinity tag, and 

therefore analysis of untagged proteins is essential. Whilst the double toroid crystal 

structure of SmPrx1 revealed some important pH-induced conformational changes, it is 

becoming clear that the his-tag has a major role in toroid association, and may even 

affect oligomerisation indirectly by causing subtle conformational changes (discussed in 

section 5.1.4.2). It is therefore unclear whether the stacking of SmPrx1 is driven by the 

pH-induced movements, or if the his-tag contributes to this assembly, which has been 

seen to be the case in the oligomerisation of other Prxs (Gretes and Karplus, 2013).  

 

Angelucci et al. (2013) postulated that formation of stacks at low pH is relevant to the 

pathology of schistosomiasis, where low pH is encountered in the life cycle.  Other Prxs 

shown to do this include Prx2 (formerly known as calpromotin), that has been seen to 

shift to a higher molecular weight species at pH 5.0 (Kristensen et al., 1999) as well as 

the HsPrx3 results that we present here. It is therefore proposed that HsPrx3, and 

potentially all Prxs that form toroidal oligomers, may be able to form HMW structures 

driven by acidification-mediated assembly. A systematic survey of Prxs from different 

organisms would be interesting to unravel the extent to which the pHs encountered in 
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the natural biological environment influence the tendency of these proteins to assemble 

into higher order forms.  

 

The presence of HMW structures in vivo remains uncertain. It has been indicated that 

tubular structures can form in response to cellular stress (Phalen et al., 2006), and these 

have been visualised with immunostaining. However, this technique is indirect, and it is 

clear that a detailed analysis of the HMW forms of Prx, their mechanism of formation, 

and direct analysis of their appearance in vivo is needed. A useful future study would be 

electron tomography investigations of these HMW species, which has been successful 

in studying large complexes such as the ribosome (Ortiz et al., 2006).  
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Chapter 7 Summary and conclusions 

 

7.1 Introduction 

 

The aim of this thesis, as outlined in section 1.6, was to characterise the two 

peroxiredoxin systems, MtAhpE and HsPrx3. In particular, clarification of the proteins’ 

quaternary structures and response to environmental conditions was a goal. Secondly, 

the potential for the proteins to form HMW structures was investigated, with a view to 

control their formation. 

 

These Prxs were chosen as a model self-assembling protein system, due to the variety of 

quaternary structures seen across the Prx family, and the potential for triggered self-

assembly. Modifications were designed to influence protein quaternary structure with 

two goals:  

1. Mimic structural changes thought to occur during the normal cycle of the 

protein, and gain insight into the interactions involved;  

2. Drive the formation of non-native structures which may have 

applications in nanotechnology.  

 

Solution characterisation was carried out using chromatography, complemented by light 

and X-ray scattering experiments. The activity of mutated proteins was tested using a 

kinetic assay, and TEM was used for further structural characterisation. Cryo-EM and 

3D reconstruction were employed to obtain detailed information of the HMW 

structures.  
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7.2 Quaternary structure of the proteins studied 

 

7.2.1 MtAhpE  

 

Despite its key role in the M. tuberculosis antioxidant system (Hugo et al., 2009), 

limited information is available. The instability and propensity to aggregate which was 

seen in vivo in this study (chapter three) suggest that the lack of published information 

may in part be due to difficulties in characterisation and manipulation. MtAhpE had 

previously been crystallised as an octamer (Li et al., 2005), though the reported 

observation of this arrangement in solution was a misinterpretation (Dr J. S. Lott, 

personal communication), and has been suggested to be an artefact of crystallisation 

(Karplus and Hall, in Flohé and Harris, 2007). This study revealed that untagged 

MtAhpE forms dimers which associate to aggregates in non-reducing conditions; 

although the precise nature of these aggregates was not able to be determined. The 

presence of the octamer could only be inferred when the his-tag was attached, and a 

tetramer was found to be the dominant species under these conditions (section 3.5). A 

tetrameric arrangement of MtAhpE is readily recognised in the crystal unit cell (PDB 

ID: 1XXU, Li et al., 2005). Notably, a recent paper was published that refuted the 

octameric arrangement of a Prx from a P. yoelii, revealing that it was in fact an artefact 

caused through the presence of an N-terminal affinity tag (Gretes and Karplus, 2012). 

Although the N-terminal his-tag of MtAhpE does not replace native residues as it does 

in P. yoelli, it is possible that it causes a rearrangement of this region, leading to the 

formation of non-native assemblies. It is therefore proposed that the tetramer and 

octamer of MtAhpE are artefacts of the his-tag. Furthermore, the tetramer is the 

predominant species in solution, with the octamer comprising only a very small 

population, suggesting that the conditions of crystallisation selected for this species.  

 

In typical Prxs, the A-type interface is stabilised when the protein is reduced or 

hyperoxidised, leading to the formation of toroids (Wood et al., 2003; Ogasawara et al., 
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2012). However, it has been suggested that different mechanisms drive the formation of 

the interface in either reducing or hyperoxidising conditions (Muthuramalingam et al., 

2009). The dimer of MtAhpE forms about an A-type interface (Li et al., 2005) and was 

present in all conditions, but showed increased stability in hyperoxidising conditions 

(section 3.4.1.1). This supports the theory that formation of the interface is driven by 

different mechanisms in different conditions. 

 

Preliminary characterisation of mutations of the A-type interface (section 3.7.2) 

indicated destabilisation of the MtAhpE dimer was achieved, resulting in dissociation of 

the his-tagged tetramer to a dimer-monomer mixture. Disruption through single-residue 

mutation suggests that the interface is highly specific and relies on essential “hotspots”. 

Knowledge of these interactions could open up an avenue for small molecule interface 

disruptors, to influence assembly and potentially activity. 

 

7.2.2 HsPrx3 forms a dodecamer in response to reduction and neutral 

pH 

 

The involvement of HsPrx3 in cellular processes such as apoptosis, and its potential role 

in preventing carcinogenesis has meant much research has been devoted to unravelling 

the controlled expression and in vivo roles and interactions of the protein (for example, 

Wang et al., 2013; Whitaker et al., 2013; Li et al., 2013). Little attention has been 

focussed on the quaternary structure or supramolecular assemblies, with the size of the 

toroid ambiguous until now. The generation of a 3D structure of the native HsPrx3 

toroid unequivocally demonstrated that the protein existed as a dodecameric 

arrangement. This corrected a previous assumption that the protein adopted a decameric 

arrangement, which was generally accepted in the field (C. C. Winterbourn, University 

of Otago, personal communication). Introduction of a single residue interface mutation 

did not alter the oligomeric state, suggesting that the HsPrx3 interface may be stabilised 
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primarily by hydrophobic packing rather than specific interactions as was seen for the 

MtAhpE interface. 

 

As discussed in chapter four, the dimer-dodecamer equilibrium of HsPrx3 was seen to 

be controlled primarily by redox state, with pH and protein concentration having some 

influence (section 4.4). The anti-apoptotic roles of HsPrx3 (Li et al., 2013) and pH-

induced oligomerisation observed in this study, led to the hypothesis that the shift in 

quaternary structure may serve a protective mechanism in the cellular context. A shift 

toward neutral pH occurs in the mitochondria during early apoptosis (Takahashi et al., 

2004), and leads to the stabilisation of non-reduced HsPrx3 toroids and possibly higher 

order assemblies (section 4.3.1.4 and 6.4.1). The toroids of other Prxs have been seen to 

associate with the membrane (Cha et al., 2000), and through this adhesion, stimulate ion 

channels (Low et al., 2007). HsPrx3 could act as a signal for early apoptosis, and 

prevent unwanted apoptosis through a similar membrane association.. 

 

7.2.3 HsPrx3 active site architecture is key in toroid formation 

 

Chapter five describes the design and generation of a set of modified HsPrx3 molecules 

with altered self-assembly properties. It was discovered that the dodecamer could be 

eliminated through mutating residue R123, presumably by increasing CP loop mobility 

and possibly causing further disruptions to the tertiary structure (section 5.4.1). 

Mutation of CP would be expected to cause a similar increase in loop mobility, but 

resulted in a stabilised dodecamer and some stacking of toroids. This was concluded to 

be due to more extensive unwinding of the CP loop and helix α2, allowing the R-type 

interface to form (section 1.2.5.4). The propensity of helix α2 to unwind has been 

suggested to be increased by the presence of a proline residue (P48; Saccoccia et al., 

2012). This was confirmed by mutation of this residue, which resulted in stabilisation of 

the toroid, likely due to the prevention of the CP loop transitioning into the LU 
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conformation. Interface mutations have a less dramatic effect on the dimer-dodecamer 

equilibrium (section 5.4.1), indicating that the primary factor in maintaining appropriate 

self-assembly properties is the correct active site structure. However, the S78A interface 

mutation did encourage the formation of HMW structures, highlighting the potential to 

increase α2 helix and CP loop unwinding indirectly. 

 

Mimicking the structural changes that occur in physiological conditions has been 

achieved for a number of states as summarised in table 7.1.  

 

 

Table 7.1: Muteins mimicked different states of HsPrx3 

Through altering the conformation of the CP loop and α2 helix, the mutations that were 

introduced to the HsPrx3 sequence gave insight into the conformational changes that occur 

during the catalytic cycle. This also provided means to controlling the quaternary structure. 

Construct Possible structural changes Mimicked state 

R123G Unfolding of CP loop  Oxidised CP 

S78A Unwinding of helix α2 Hyperoxidised CP 

P48A 
Prevention of helix α2 and CP loop 

unwinding 
Reduced CP 

C47S Increased helix α2 and CP loop unwinding Protonated CP 

 

 

 

The instability and propensity for aggregation of many of these constructs meant that 

further experiments were not carried out as they did not present a useful means to 

control the quaternary structure of HsPrx3. However, they do provide valuable 

information as to the factors which influence the dimer-dodecamer equilibrium, and, 

therefore, a starting point to design modifications which provide a greater level of 

control. This was explored through the combination of the C47S and S78A mutations, 

and resulted in the production of a highly stable toroid, with an increased propensity to 

form HMW structures of fairly uniform size.  
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7.2.4 HMW species of HsPrx3 

 

Protonation and hyperoxidation have been suggested to lead to α2 helix unwinding and 

HMW structure formation, possibly through intrinsically different stereochemical 

effects (Angelucci et al., 2013). The different morphologies seen in the C47SS78A and 

S78A muteins support this hypothesis, and indicate that a number of HMW assemblies 

may be accessible to all toroid-forming Prxs under different conditions. The appearance 

of stacked toroids in the C47SS78A sample revealed that HsPrx3 contains elements that 

contribute to the R-type interface, leading to the proposal that this may be conserved 

across the Prx family. 

 

Further investigation of the R-type interface through lowered pH revealed that long, 

ordered nanotubes could be generated at pH 4.0. The formation of small stacks at low 

pH had been hypothesised to be relevant to the physiology of Schistosoma mansoni 

(Saccoccia et al., 2012); however, the data presented in this thesis suggest this pH 

sensitivity may be present in all Prxs. The acidified sample of SmPrx1 was seen to only 

form small assemblies of two toroids, despite the symmetrical nature of the toroids. The 

data presented relating to wildtype HsPrx3 indicated that the favoured arrangement of 

his-tagged protein was an assembly of two toroids. It is therefore proposed that the 

small stack of SmPrx1 seen in the crystal structure is in fact driven by his-tag 

association. This theory was supported by the examining the stacking modes of his-

tagged HsPrx3 and untagged acidified HsPrx3 through high resolution EM, which 

revealed significant differences. 
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7.4 Summary and future work 

 

This thesis presents some valuable insight into the self-assembly of HsPrx3, which 

represents a typical member of the 2-Cys Prx family. Approaches to control this self-

assembly were developed, along with protocols to produce highly ordered HMW 

assemblies. These are summarised in figure 7.1. Characterising the quaternary structures 

in solution presented some challenges as the species were often in dynamic equilibrium. 

This highlighted the existence of possible oligomeric intermediates which had not been 

previously reported, and confirmed the necessity to use multiple complementary 

techniques to analyse the species present. 

 

 

Figure 7.1: Modifications of HsPrx3 produced a variety of supramolecular structures 

Disruption of the toroid to single dimers was achieved with the R123G mutein. Dissociation 
could be prevented with the his-tag, which also led to toroid stacking. Larger stacks and 
interlocked toroids were generated by introducing the C47SS78A mutations. Low pH caused 
toroids to stack to long nanotubes; some control of length was possible through the addition of 
ammonium sulfate. Nanotubes grew fairly slowly, therefore regulating growth time could also 
be a means to control length. 
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Future work should focus on high resolution structural analyses of the various 

conformations, to unravel more details of the precise quaternary structure. Crystal 

structures of each of the muteins and the tagged and untagged wildtype would confirm 

the loop movements that have been suggested to occur. Although diffracting crystals 

were not produced in the course of this thesis, small crystals were seen in trials and 

indicated conditions for fine screening. The lack of published crystal structures of 

HsPrx3 or muteins hint at intrinsic flexibility of the protein, and so further optimisation 

is necessary. The generation of more mutated constructs could also be beneficial. Table 

7.2 contains suggestions for mutations of HsPrx3 and MtAhpE which could provide 

complementary structural variants to test the hypotheses presented here. 

 

A C47D mutation of HsPrx3 would mimic the hyperoxidised state as the aspartic acid 

side chain is similar to the cysteine sulfinic acid (as was investigated in the case of 

SmPrx1, Angelucci et al., 2013). This could provide support to the theory that 

hyperoxidation leads to different structures than protonation. Further protocol 

optimisation could allow the examination of the hyperoxidised state, and provide 

support for the suggested different HMW forms. The R123G mutation was 

hypothesised to lead to increased CP loop movements, which are often associated with 

HMW formation (Saccoccia et al., 2012). However, the R123G mutein was dimeric, 

hypothesised to be due to A-type interface destabilisation. It was considered that 

stabilising the A-type interface of this mutein with a second mutation could lead to an 

increase in the HMW structures, as the CP loop will remain unwound within the locked 

toroid. Hence, the S78AR123G double mutein is proposed as this work has shown the 

S78A mutation to increase the stability of the A-type interface. This would give direct 

insight into the role of CP loop mobility in the formation of HMW structures. To further 

probe the possibility to role of CP loop mobility, the introduction of a glycine residue at 

the beginning of this loop (T49G) is suggested. 
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Table 7.2: Suggestions for future mutational studies 

New mutations to represent the hyperoxidised, oxidised and reduced states could provide more 

insight into the HsPrx3 quaternary structure. 

 

Construct Intended structural changes 

HsPrx3-C47D Force movement of CP out of the active site 

HsPrx3-S78AR123G Further increase CP loop mobility 

HsPrx3-T49G Increase unfolding of CP loop  

MtAhpE-Q47P Encourage helix α2 unwinding 

HsPrx3-S78C Introduce a redox switch to the interface 

 

 

The conserved active site proline (P48 in HsPrx3) is thought to encourage the 

unwinding of helix α2 (Saccoccia et al., 2012). This residue is conserved throughout the 

Prx family, but is not present in MtAhpE. Introducing this proline with a Q47P mutation 

could give insight into the role of this residue in the structural transitions. 

 

This thesis presents new information regarding the stacked toroids and nanotubes that 

HsPrx3 can form. The S78A mutein also hinted at the possibility to generate protein 

cages, similar to the icosahedra published by previous groups (Meissner et al., 2007; 

section 1.2.5.4). This mutein would benefit from further TEM studies, to provide clues 

to the nature of the clusters observed and the interactions involved. Other groups 

(Meissner et al., 2007) reported cages of toroids in the presence of PEG, therefore 

investigations using other precipitants could be worthwhile. These structures have 

potential in nanotechnology, and their functionalization would be an important next 

stage of research. Possible applications could be the use of protein nanotubes to grow 

metal nanowires (Valenzuela and Deymier, 2008), or providing a microenvironment 

within a protein cage to contain a reaction (Allen et al., 2002). The controlled assembly 

and disassembly of Prx subunits could also have biomedical applications. Peptides are 

attractive molecules for drug and vaccine development, but are often limited by their 

very short half-life in vivo.  One strategy to overcome this is the conjugation of the 

peptides to molecules which are not broken down or cleared by the body (Pollaro and 
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Heinis, 2010). Carbon nanotubes have attracted attention for their potential as drug 

delivery vehicles (for example, Klumpp, 2006; Bianco et al., 2006), and naturally 

occurring proteins such as HsPrx3 could be useful alternatives  for this role, as the risk 

of nanotoxicity could be lower. The dynamic nature of toroid assembly also means that 

a number of different preparations could be produced with different peptides, and 

simply mixing the samples would produce toroids containing multiple potential 

therapeutics. 

 

The future applications for controlled, supramolecular protein assemblies are broad. The 

nanotubes and putative cages of HsPrx3 offer a wide range of benefits to the carbon or 

polymers which are typically used. Proteins have the potential to be reversible, and 

functionalisable; provide a variety of architectures and produce flawless assemblies. 

Proteins are attracting attention as materials for nanotechnology, but a firm 

understanding and ability to precisely control their self-assembly must first be achieved. 

This work presents significant progress toward this goal in the case of HsPrx3, and 

proposes the consideration of the Prx family as versatile tectons for nanotechnology. 

The potential to encourage the formation of different HMW structures from a single 

molecule is presented, and the ability to control the assembly through simple changes to 

the primary structure or environmental conditions is demonstrated. Additional work is 

needed to validate the Prxs as candidates for nanotechnology, but this study identifies 

HsPrx3 as versatile and manipulable tecton, worthy of further attention. 
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Appendix 1  Biophysical techniques 

 

A1.1 Circular Dichroism 

 

UV circular dichroism (CD) is an excellent technique for fast and simple analysis of the 

secondary structure of proteins. In this study it was used to assess the correct folding of 

recombinant proteins and muteins. 

 

Polarisation of light through an appropriate filter results in the electric field oscillating in 

a wave that is the resultant of two vectors (figure A1.1). This oscillation traces out a 

circle which can be either clockwise (right-handed) or anticlockwise (left-handed). 

Optically active chiral molecules will interact with polarised light, absorbing left-hand 

and right-handed circularly polarised light to different degrees and resulting in circular 

dichroism. Optically active molecules also have different refractive indices for the two 

forms of light, which results in the rotation of the light, in a wavelength dependent 

manner. The differential absorption in conjunction with rotation leads to elliptically 

polarised light (figure A1.1C; Tinoco and Canter, 1970).  
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A: Circularly polarised light        B: Polarised light oscillates about two vectors 

 
C: Interaction with chiral molecules 

causes differential absorption 

Figure A1.1: UV-CD relies on the optical properties of proteins: A: By passing through a 

prism or suitable filter, light can be circularly polarised, rotating about the direction of 

propagation. Right-hand polarisation is shown B: When viewed from the point of the source, the 

oscillation can be viewed as the result of two equal length vectors. C: Upon interacting with an 

asymmetric molecule, the differential absorption of left- and right-hand polarised right leads to 

the resultant vectors tracing out an ellipse. 

 

The major optically active groups in proteins are the amide bonds of the backbone, and 

aromatic side chains (Greenfield, 1996). When these chromaphore groups are arranged in 

ordered arrays (such as α helices or β sheets), the excitation of one molecule by light is 

translated through the neighbouring molecules, resulting in a characteristic CD spectra 

(figure A1.2). Predominantly α-helical proteins have absorption minima at 222 nm and 

208 nm and a maximum at 193 nm (Holzwarth and Doty, 1965). Proteins with well-

defined β-sheet arrangements have a negative maximum at 218 nm and a maximum at 

195 nm (Greenfield and Fasman, 1969), while disordered proteins have a minimum near 

195 nm (Venyaminov et al., 1993; figure A1.2). Raw data is converted to mean residue 

ellipticity using equation A1.1, which produces a value that is normalised per residue and 

therefore allows comparison between different proteins (Greenfield, 2006). 
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              [       ]
  Equation A1.1 

 

Where θ is the optical rotation reported in millidegrees, the path length is in mm and the 

protein concentration is in mg/mL. The resultant mean residue ellipticity is therefore 

reported in deg.cm
2
 dmol

-1
.  

 
Figure A1.2: Typical CD spectra of secondary structure elements: Spectra were plotted using 

data obtained from the Protein Circular Dichroism Databank (Whitmore et al., 2011). A 

predominantly α-helical spectrum is shown in blue (as exemplified by Sensory rhodopsin 2, 

CD0000117000); β-sheet spectrum in red (as exemplified by OmpG, CD0000118000) and a 

random coil spectrum in black (Ferredoxin, CD0000032000). 

 

The analysis of protein CD spectra is based on the principle that the CD spectrum (Cλ) 

can be expressed as a combination of the individual secondary structure components 

(equation A1.2). 

 Cλ = ΣfkBkλ       Equation A1.2 

Where fk  is the fraction of the secondary structure k. The component secondary structure 

spectra, Bkλ, are determined through comparison with a set of reference proteins. The 

fractions of the secondary structure elements of the reference proteins are calculated from 

the corresponding crystal structure (Sreerama et al., 2000). In the case of this study, the 
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relative percentages of the secondary structure elements were calculated automatically 

using the CDSSTR program (Compton and Johnson, 1986) through the online server 

Dichroweb (Whitmore and Wallace, 2004). 

 

A1.2 Size-exclusion chromatography 

 

Size-exclusion chromatography (SEC) is a commonly used technique to analyse the size 

of protein particles, and, therefore, the oligomeric species present in solution. The 

technique works to separate a mixture by distributing the individual components between 

a stationary phase (the partially permeable gel matrix within the column), and a mobile 

phase (the eluent), which carries the mixture through the column. Originally made from 

starch (Lathe and Ruthen, 1955), the matrix is typically composed of dextran – the 

analytical S200 10/300 columns used in this study were prepacked with Superdex beads, 

composed of dextran covalently linked to cross-linked agarose, which gives a stable and 

high resolution matrix (reviewed in Einstein, 2006). The matrix size is selected to provide 

pores of comparable size to the analyte – in this case, the average bead size was 13 µm 

which allowed separation of particles from 10 – 600 kDa (GE Healthcare, 2002). Small 

particles diffuse into the beads of the matrix, and are slowed in their passage through the 

column, whilst large particles cannot enter the beads and pass through the column quickly 

with the mobile phase. The volume at which a particle elutes is a function of its 

penetration of the matrix; represented by the distribution coefficient (Kd), the ratio of the 

concentrations of the particle in the stationary and mobile phases (equation A1.3; 

Stellwagen, 2009). Elution of proteins is typically determined by UV absorbance. The 

Ӓktapurifier used in this work contains a triple wavelength detector at the end of the 

column, which was used to monitor the UV absorbance at 280 nm as the elution was run.  

     
[       ] 

[       ] 
      Equation A1.3 
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Where [analyte]s is the concentration of the analyte in the stationary phase, and [analyte]m 

is that in the mobile phase. In practice, Kd is difficult to measure and so Kav is routinely 

used, as Kd:Kav is constant for a given matrix. Kav is easily determined experimentally 

using equation A1.4 (Squire, 1985). 

      
        

        
     Equation A1.4 

Where Ve is the volume at which the analyte elutes, Vt is the total volume of the volume 

of the column and V0 is the void volume. Kav is related to the log of the molecular weight 

(Squire, 1985), and therefore mass can be calculated by interpolation from a calibration 

curve generated from protein standards of known masses.  

 

A1.3 Size-exclusion chromatography with in line light scattering 

 

Although analytical SEC is a commonly used and highly informative technique for 

globular proteins, some factors such as the hydration of the protein and shape of the 

particle can lead to non-typical movement through the column. This can yield inaccurate 

molecular weight calculations, as Kav is related to the radius of gyration (Andrews, 1965). 

SEC also assumes that the protein to be analysed is of similar shape and behaviour to the 

standards. The toroid of Prx oligomers may give unexpected results, as the presence of a 

large central cavity leads to a larger radius than would be expected for the mass. 

Although still not well understood, it is becoming accepted that the movement of a 

protein through the matrix may be more reliant on the Stoke’s (hydrodynamic) radius 

than the weight, and this may be a more appropriate parameter to evaluate by SEC 

(Winzor, 2003). Given the variations between individual proteins, there is no standard 

relationship between the hydrodynamic radius and molecular weight of a protein (Cabré 

et al., 1989). Therefore, these parameters were directly examined using SEC with in-line 

static light scattering and viscometry (SEC/SLS) where available, which allowed 

calculation of molecule dimensions independent of elution volume. 
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A1.3.1 Instrument set up and recording of parameters 

 

The Viscotek 302-040 Triple Detector GPC/SEC system (ATA Scientific) used in this 

study uses a 24 mL S200 10/300 analytical SEC column as a fractionation step, combined 

with a triple detector method to calculate molecular weight, radius of hydration (RH), and 

concentration of species. As the eluent leaves the column, the refractive index (RI), UV 

absorbance at 280 nm (UV280), differential pressure (DP; a measure of intrinsic 

viscometry) and light scattering at 90º is measured. The refractive index was used to 

calculate molecular weight as it is considered to give more precise values (Oliva et al., 

2001). 

 

As the sample elutes from the column it enters a light scattering cell. A laser beam is 

focussed on the end of this cell, and a detector measures light that is scattered at 90º to 

the incident light. The solvent will scatter light to some degree, and the increase in 

scattering intensity is directly proportional to the molecular weight and sample 

concentration. Scattering at 90º is used as this provides optimum signal-to-noise 

performance (Viscotek Instrument Manual). The sample then passes through a dual cell, 

deflection RI detector. Light is passed through the dual cell and into a prism which splits 

the beam into two component beams (figure A1.3). These are detected by two photodiode 

detectors, which generate electric currents proportional to the light that hits them. The 

currents are subtracted and the amplified difference forms the RI output. When the cells 

contain the same solution no deflection is seen. This would be expected for the 

chromatographic baseline, and equilibration of the column is carried out until the RI 

output is stable (section 2.5.3). At this point the detector is reset by aligning the mirror so 

that the output is zero. 
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Figure A1.3: Simplified diagram of the refractometer: The beam reflected from the concave 

mirror passes through the dual cell containing the sample (s) and reference (r) solution, and the 

difference between split beams detected by photodiode detectors. The currents generated pass to 

an amplifier (not shown) and produce an output in millivolts (mV).  

 

The RI peak area is exactly proportional to the amount of protein and the dn/dc value, 

and can therefore be used to calculate the concentration of a species as indicated by a 

peak on the chromatogram: 

        
  

  
   (Takagi, 1990)   Equation A1.5 

kri is an instrument calibration constant (calculated by running known standards), c is the 

relative concentration, and dn/dc is constant at 0.186 mL/g for proteins independent of 

amino acid content (Wen et al., 1996). dn/dc is defined as the specific refractive index 

increment and is represents the change in refractive index for a given increment of 

concentration (Huglin, 1972). Assuming that all of the sample that is injected elutes from 

the column, then the sum of all data points across the chromatogram can be taken, and the 

relative concentration of each species determined. Details of the calculations involved 

and instrument set-up can be found in the Viscotek Instrument Manual (Malvern, version 

2.0). Finally, the viscosity of the sample is measured through a four capillary system. 

When pure solvent is flowing, the differential pressure (DP) is zero. As sample elutes, the 

pressure in three of the capillaries increases, while a delay column before the fourth 

capillary ensures this remains filled with pure solvent. The DP is now no longer zero, and 

the intrinsic viscosity of the sample can be calculated (Pamies et al., 2008). The DP is 
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reported in Pascals (Pa), and as it is nearly proportional to the intrinsic viscosity, provides 

the viscometer “chromatogram”.  

 

A1.3.2 Determination of molecular weight 

 

The triple detector method can be used to calculate molecular weight using the light 

scattering viscometer signals, after calibration to a standard (BSA). Although the use of a 

triple detector system in theory eliminates the requirement for calibration, the 

refractometer is in fact designed to be a detector and not an absolute refractometer and 

therefore the instrument calibration constant (equation A1.5) must be found by 

calibration to a known standard. This value will remain constant until the buffer is 

changed, and so one standard is necessary at the beginning of any sample run. A BSA 

standard was also routinely run after any experimental samples, to ensure that the 

calibration was still valid.  

 

The calibration and determination of the calibration constant was carried out 

automatically by the OmniSEC software provided with the instrument (Viscotek 

Instrument Manual, Malvern, version 2.0). The calibration was carried out and verified 

through analysing the BSA chromatogram as an unknown sample (OmniSEC Technical 

Note MRK1664-01, Malvern 2011). Molecular weights of samples were automatically 

calculated from the RI, light scattering signal and DP of the chromatogram using the 

OmniSEC software, which employs the following equations: 

 
   

  
 

 

       
      Equation A1.6 

Where K is an optical constant (derivation can be found in Viscotek Instrument Manual; 

Malvern, version 2.0); P(θ) is the particle scattering function (the angular dependence of 

light scattering intensity; Kratochvil 1987). The RH can then be derived using equation 

1.6. These calculations are carried out automatically using the OmniSEC software.  
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     Equation A1.7 

 

A1.4 Small-angle X-ray scattering 

 

Chromatography carries with it the potential of matrix interactions, shear stress and 

elution of particulate matter that is shed from the beads, all of which can influence the 

quality and accuracy of the data obtained. Small angle X-ray scattering (SAXS) was 

routinely carried out to give information about the oligomeric state of the protein in free 

solution, without the influence of a matrix. SAXS can provide highly accurate molecular 

mass calculations, as well as providing structural information (Feigin and Svergun, 

1987). Although the resolution is lower than the popular structure-determination 

techniques of X-ray crystallography and nuclear magnetic resonance (NMR), SAXS is a 

useful complementary technique, and examines the proteins in the experimental buffer, 

eliminating the potential influence of unusual additives used for crystallisation, or 

artefacts due to crystal packing. Recent advances in the field have led to the development 

of high-throughput data collection and analysis, along with improvements in ab initio 

modelling. Analysis of intrinsic flexibility and quaternary structure of proteins have made 

SAXS a powerful and increasingly popular tool in modern molecular biology (Mertens 

and Svergun, 2010). An advantage of SAXS is the minimal sample preparation compared 

to other techniques, and quantity of information that can be derived even from the raw 

data. However, the data are solution averaged and extracting data from polydisperse 

systems is challenging (Jacques and Trewhella, 2010). 

 

The scattering of X-rays from a solution of biomolecules depends on the difference in 

electron density between the solvent and the solute (in this case, the protein molecules). 

The scattered X-rays interfere either constructively or destructively, and an interference 

pattern is detected by the detector. The SAXS/WAXS beamline of the Australian 

Synchrotron uses a 1M Pilatus detector, which is a hybrid pixel detector, and allows 
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single photon per pixel resolution and 30 frames per second resolution (details of the 

detector can be found in Broenniman et al., 2005). The interference pattern can be used to 

determine the distance between the incident and scattered wave, and therefore calculate 

the magnitude of the scattering vector q (figure A1.4; equation A1.8; Mertens and 

Svergun, 2007). The units of q are the inverse of the units of the wavelength used, 

typically Å
-1 

or nm 
-1

. 

 

Figure A1.4: Standard set-up of a SAXS experiment. Collimated and focussed X-rays from a 

synchrotron source were passed through the sample and the interference pattern used to calculate 

the distance between scattering centres, and from this gain information relating to particle size 

and shape. 

 

    
         

 
      Equation A1.8 

 

2θ is the angle between the incident wave and the scattered intensity. Aqueous solutions 

of proteins give rise to isotropic scattering intensity as the molecules will be randomly 

orientated (Mertens and Svergun, 2010). The scattering intensity (I) is recorded as a 

function of q. For data analysis, 2 dimensional (2D) interference patterns were averaged 

and the buffer scatter subtracted using the automated software SCATTERBRAIN 

(Petoukhov et al., 2007). After subtraction, the corrected intensity (I(q)) is proportional to 

the averaged scattering of the particles in solution (Mertens and Svergun, 2007), and is 

presented as radially averaged 1 dimensional (1D) curves for data analysis (figure A1.5). 

 

 (I(q))Ω = (A(q)A
*
(q))Ω     Equation A1.9 

323



P a g e  | K 

 

 

Where the scattering amplitude (A(q)) is a Fourier transformation of the excess scattering 

length density, and the intensity is average over all orientations (Ω). 

 

 

Figure A1.5: Typical X-ray scattering pattern: Exemplified by wildtype HsPrx3. Buffer alone 

is shown in red, HsPrx3 in black, and the subtraction is blue, representing the contribution of the 

protein alone. 

 

 

The 1D scattering curve can be used to obtain information about particle size and shape, 

and computational methods also allow the determination of modest resolution 3D models. 

Interpretation of the scattering data can be carried out by model-independent methods 

such as Guinier and Porod volume analysis; or model-dependent methods such as the 

pairwise distribution analysis (Konarev et al. 2003; Mertens & Svergun 2010). 

 

 

A1.4.1 Guinier analysis 

 

At low q values the scattering intensity is dependent only on the radius of gyration RG, 

which relies on the average squared distances of each scattering centre from the particle 

centre. At low q values, scattering can be described by the Guinier approximation 

(equation A1.9; Glatter & Kratky 1982). 

           
    

  

       Equation A1.10 

324



P a g e  | L 

 

 

Plotting logI(q) against q
2
 will give the Guinier plot, from which RG and I(0) can be 

extracted (Guinier & Fournet, 1955). RG is determined by the slope of the graph, which 

can be automatically determined using software such as AutoRg (Petoukhov et al. 2012; 

Petoukhov et al. 2007). For globular proteins the Guinier approximation is typically valid 

over a q-range of qRG<1.3, and the linearity of the plot within this range gives an 

indication of the quality of the sample, with a non-linear dependence indicating 

aggregation (figure A1.6). When this is seen the Guinier approximation is not able to be 

used to determine RG (Glatter & Kratky 1982).  

  

 

Figure A1.6: Guinier plots for an aggregated and non-aggregated sample: A good quality 

sample yields a linear plot within the Guinier region (as exemplified by the C47SS78A mutein, 

chapter five, blue diamonds). An aggregated sample (the S78A mutein, chapter five, black 

diamonds) shows a non-linear trend, with a significant upward trend at the lowest q values. 

Primus was used to generate Guinier plots (Konarev et al., 2003). 
 

 

I(0) can be found by extrapolation, and is the square of the number of electrons in the 

solution (equivalent to the value of I(0, 0, 0) in X-ray crystallography). I(0) is 

independent of particle shape and can be used for molecular weight determination 

(equation A1.10). 

        
   

               Equation A1.11 

Where NA is Avogadro’s number, µ is the ratio of the molecular weight to the number of 

electrons (take as 1.87 for proteins, Putnam et al., 2007), ρ0 is the average electron 
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density of the solvent, and φ is the ratio of the particle volume to its number of electrons 

(Vachette and Svergun, 2000; Koch et al., 2003). 

 

 

A1.4.2 Porod analysis 

 

Where low q values give information relating to the RG and molecular weight, high q 

values information regarding molecular shape can be derived. The intensity of the 

scattering decreases by Porod’s law for folded macromolecules (Porod, 1951; equation 

A1.11). 

                 Equation A1.12 

 

Where df is the fractal degrees of freedom. For example, scattering from flat ellipsoids 

had a df = 2 in the high q-range, whereas scattering from needle-like ellipsoids has a df = 

1 in the high q-range. The Porod volume of the molecule in nm
3 

is typically twice the 

molecular mass in kDa for globular proteins, and can be derived from the Porod invariant 

(Q; Porod, 1982; full details and derivations can be found in Putnam et al., 2007). These 

calculations require accurate data across the entire q-range and can therefore yield errors, 

however, they provide a useful confirmation of parameters calculated from the Guinier 

region. The AUTOPOROD function of Scatterbrain software was used to automatically 

calculate the molecular weight, particle volume and Dmax from the Porod volume. 

 

 

A1.4.3 Pairwise distribution function 

 

Pairwise distance distribution function (P(r)) plots represent a histogram of the distances 

between scattering atoms in a particle. The P(r) function is calculated by an indirect 

Fourier transformation (details of the calculations can be found in Mertens and Svergun, 

2010). The GNOM program (Semenyuk and Svergun, 1991) constructs trial P(r) 
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functions that are Fourier transformed, then back projects them to assess the fit with the 

experimental scattering. The program then uses a regularising multiplier to balance the 

smoothness of the trial functions with the goodness of fit to the data. The plot provides an 

easily interpreted depiction of information relating to particle shape. For example 

globular particles yield bell-shaped curves, with a maximum at ~Dmax/2. Particles with 

multiple domains yield profiles with multiple shoulders corresponding to intra and inter-

subunit distances (Mertens and Svergun, 2010; figure A1.7). 

 

 
Figure A1.7: Typical P(r) plots from particles of different shapes: Spherical particles yield a 

bell shaped curve with a maximum at Dmax/2. Elongated particles show a negatively skewed 

profile, and multi-domain particles show multiple maxima. Figure adapted from Mertens and 

Svergun, 2010.  

 

 

The P(r) function is zero at r = o and at r = Dmax, and for processing of data calculations 

are constrained to zero at these values. As the P(r) plot takes into account the whole 

range of the data, it is often considered a better estimation of the RG and I(0) than the 

Guinier approximation as it is not limited to a small region (Putnam et al., 2007). 

Presence of aggregates within a sample can therefore also be identified by comparing RG 

and I(0) values calculated from P(r) plots and those generated from the Guinier plots.  
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A1.5 Transmission Electron Microscopy 

 

The resolution of a light microscope is mainly limited by the wavelength of the light used 

(Abbe, 1873; equation A1.12). 

    
     

     
       Equation A1.13 

Where r is the resolution limit, μ is the refractive index of the material between the object 

and objective lens, and α is the angle above which the light is stopped by the aperture 

(figure A1.8).  

 

Figure A1.8: The definition of the angle α 

 

Both light and electron microscopes produce an image from the transmission of 

illuminating radiation through the sample, either light or electron waves. The TEM 

therefore relies on the wave-particle duality of electrons proposed by de Broglie, and as 

the wavelength of electrons in a TEM operated at 200 kV is 0.025 Å (full calculation can 

be found in Zou et al., 2011), this technique provides superior resolution. Furthermore, 

the increased scattering of electrons compared to X-rays mean that they can be used to 

obtain more structural detail about small structures than X-ray scattering techniques 
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(Henderson, 1995). In practice, the resolution limit of TEM is limited to ~1Å due to 

spherical and chromatographic aberrations of the lenses. In the case of proteins the best 

resolution achieved to date is 1.9 Å (for lens-specific aquaporin-0; Gonen et al., 2005). 

 

In the TEM a beam of electrons is produced by a thermionic or field emission electron 

gun, and accelerated by high voltage (100-300 kV). The beam can be focused by 

magnetic condenser lenses onto the sample (figure A1.9), in the same way that light can 

be focused by glass lenses. The transmitted beam is focussed onto either photographic 

film or a charge-coupled device (CCD) camera by the objective and projection lenses, 

and the electron density, phase and periodicity of the transmitted electrons are used to 

produce an image. This image is a 2D projection of information in 3 dimensions, 

therefore the TEM acts like a projector to superimpose information from all regions of 

the specimen which the electron beam passed through. 

 

 

Figure A1.9: Simplified schematic of the TEM: High energy electrons pass through the 

condenser lens and are scattered by the sample. The objective lens does the first step of image 

focusing and, together with the objective aperture, screens out electrons according to their 

scattering angle. The projector lens then focuses and projects electrons onto the imaging surface. 

Figure taken from nobelprize.org, accessed 18
th
 December 2013.  
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A1.5.1 The contrast transfer function 

 

A projection image of an object produced from TEM is the result of amplitude and phase 

contrast. In bright-field EM (the most commonly used mode) the transmitted beam is 

imaged, and the amplitude contrast is produced by the loss of electrons within the 

coherent electron beam (Kleinschmidt, 2010) by high angle scattering (falling outside of 

the lens aperture), and inelastic scattering (figure A1.10). The level of contrast depends 

on the atomic number of the species that the electron beam interacts with. Therefore, the 

scattering by biological molecules shows little difference to that by the aqueous 

surroundings, and the contribution of amplitude contrast is small (~10% when no 

contrasting agent is used, Toyoshima and Unwin, 1988). This can be improved to some 

degree by using lower accelerating voltages or a smaller objective aperture, which 

screens out highly deflected electrons. 

 

Figure A1.10: A: Bright field EM images the transmitted beam. B: In dark field EM the 

aperture is positioned to use one of the diffracted beams. In both bright and dark field 

microscopy image contrast is produced by the change in amplitude of the respective 

beam. C: High resolution EM (HREM) uses a large objective aperture and focuses more 

than one beam on the back focal plane. This produces an image as the result of the phase 

difference of the transmitted and diffracted beams – the phase contrast image. Highly 

deflected electrons contain the most high resolution information, however contrast is lost. 

A balance between resolution and contrast must be found. Taken from Bendersky and 

Gayle, (2001). 
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Phase contrast arises from the differences in phase of elastically scattered and unscattered 

electrons, and the interference of these electrons. Spherical aberrations of the objective 

lens contribute to the phase shifts, and their contribution can be compensated by adjusting 

the defocus. This changes the path length of scattered electrons more than unscattered 

electrons, and can therefore increase the contrast. Most modern microscopes correct 

aberration to bring all the scattered electrons to a common focus (Hawkes, 2009), so that 

the reachable resolution can become equal to the information limit. Image formation in 

the EM is therefore a function of the lens aberration, aperture and defocus, termed the 

contrast transfer function (CTF).  

 

The CTF relates the Fourier transform of the image to that of the object being examined, 

which takes into account the aberrations of the lens (equation 1.13). These imperfections 

result in an oscillating CTF (figure A1.11). Phase reversals mean that the CTF is equal to 

zero at several points in the spatial frequency spectrum, which produces the series of 

black rings seen in the optical diffraction pattern, known as Thon rings (Amos et al., 

1982). The first zero crossing is usually taken to impose a resolution limit if no correction 

due to the CTF is applied (Wade, 1992). 

         

 Where,          =         
 

 
   

  
 

 
      Equation 1.14 

λ is the electron wavelength 

α is the angle of scattering in the microscope expressed in terms of the frequency of the 

scattered wave (resolution) 

Cs -the coefficient of spherical aberration 

Δƒ is the defocus value 

From (Ruprecht and Nield, 2001) 

 

The reversals and points of information loss seen in the CTF produces artefacts, and an 

unreliable representation. CTF correction must be carried out to produce a reliable image 
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past the resolution limit of the first zero crossing. Multiplying the image transform with 

the reverse of the CTF corrects for the reversals. Changing the defocus shifts the spatial 

frequency at which the CTF crosses zero, so to compensate for the loss of information at 

these points, images are taken at a number of defocus values.  

 

A1.5.2 Cryo-electron microscopy 

Maintaining the hydrated stated is essential to minimise artefacts that may occur when 

proteins are removed from the aqueous environment of the cell. Cryo-electron 

microscopy (cryo-EM) was developed at the EMBL (Dubochet et al., 1981; Dubochet et 

al., 1988) and has the advantage that samples are frozen so as to maintain this state, 

enabling examination in conditions very close to the native environment. The sample is 

prepared on holey grids, meaning that the potential for grid interactions is removed, and 

blotted to leave a thin protein solution film. The grid is frozen rapidly (usually with liquid 

ethane or propane), resulting in the specimen embedded in a vitrified layer of buffer. The 

thickness of the vitrified layer is important, as the formation of ice crystals or thick ice 

can distort structures, and lead to difficulties in imaging the sample due to the reduction 

in electron transmission.   

Once frozen, the sample is handled in liquid nitrogen (at around -170 ºC) to prevent the 

formation of crystalline ice which can destroy structures.  

 

A1.5.2 Single particle analysis 

In order to reduce radiation damage to the sample, low dose techniques are used in the 

EM. However, this produces noisy images with a low signal-to-noise ratio, which must 

be overcome by multiple averaging. This also allows the generation of 3D representations 

of a protein by determining relative orientations of projections, without the requirement 

of crystallisation, which can be difficult. 
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To produce a 3D image CTF correction must occur, and images with different defocus 

values must be used (as described previously). For negatively stained particle analysis, 

the spatial frequencies beyond the first zero crossing are typically filtered out, as the 

resolution available within the region before the crossing is usually satisfactory. 

 

Particles are picked using a box size typically twice the width of the particle to reduce 

artefacts whilst avoiding overlap with nearby particles. This step is usually carried out 

semi-automatically using software such as EMAN (Ludtke et al., 1999). The noise 

observed in images can be reduced by “binning”, whereby neighbouring pixels are 

combined, and their grey values averaged to produce a larger pixel. Very high and low 

spatial frequencies are due to stain non-uniformity and systematic noise respectively. 

These are removed by applying a band-pass filter with the inverse of the object length as 

the low-frequency cut-off, and the first zero crossing of the CTF as the high-frequency 

cut-off.  

 

A1.5.3 Multi-reference refinement and classification 

Noise and random information in images can be removed with averaging, as the 

information from particles of a homogeneous sample is constant. In a typical sample, the 

data set will be composed of particles in different orientations, and therefore, more than 

one 2D structure is seen. If identical 2D structures are aligned and averaged, the result is 

a number of projection structures which represent different orientations of the particles. 

These can be used for initial 3D reconstructions, which are less likely to suffer from 

noise. As it is difficult to group and align noisy images without having the class averages, 

an iterative process is required (Schatz et al., 1995). A number of class averages is 

decided to represent the structural heterogeneity within the sample, and these averages 

are iteratively refined until movement of images between classes and variations of the 

class averages minimise. Starting references are typically built by randomly averaging 

images, to reduce bias. 
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A1.5.4 3D structure determination 

If projection images representing a number of particle orientations are available, and their 

relative orientations are known, then the 2D images can be combined to reconstruct a 2D 

structure. Several software suites are available to carry out this process, including EMAN 

(Ludtke et al., 1999), SPIDER and BSoft (Heymann and Belnap, 2007). If the specimen 

shows random orientation on the grid, angular reconstruction or projection matching can 

be used to determine the relative orientations of particles (Frank et al., 1996; van Heel, 

1987). 

 

Angular reconstruction 

Angular reconstruction utilises a common lines approach. This is based on the theory that 

2D projections of the same 3D structures will have a common 1D projection in real space 

(the “common line”). This is analogous to the common line at which Fourier transforms 

of 2D projections intersect. Common lines are usually determined for the class averages, 

as the signal-to-noise ratio is better than the raw images. 

 

Projection matching  

Projection matching requires a pre-existing model, which provides projections with 

known orientations. Projections from the data set are then compared with these known 

orientations, and the angle that matches best is assigned. In multi-reference refinement, 

several starting models are used and simultaneously refined as recorded projections are 

matched with the models. This allows the sorting of a heterogeneous data set in 

homogeneous groups. 
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Once the orientations of class averages have been assigned, a 2D model can be built, 

either in real space or Fourier space (Frank, 2005; Ruprecht et al., 2001). The projections 

can be back-projected along their assigned Euler angle in real space, or the Fourier 

transforms of 2D projections can be aligned to a 3D Fourier transform of the object in 

reciprocal space. The inverse transformation will then yield the 3D structure. 

 

In the case of this study, EMAN was primarily used for image processing and 3D 

reconstruction. This program uses a hybrid approach to build 3D reconstructions which 

uses projection matching and a common lines approach. The 3D model is built using the 

common lines approach using class averages of known orientation rather than raw 

images, then the model is refined using projection matching. Once the model is built, 

reliability can be assessed by comparison to raw images and projection averages. The 

resolution of the model can be assessed by examining the Fourier shell correlation (FSC) 

between two reconstructions that were built using half of the data set. Normalised cross-

correlation coefficients between the two reconstructions are plotted against spatial 

frequencies, and the resolution is taken as that where the FSC value is 0.5. 

 

The 3D structures produced from EM are of modest resolution compared to that achieved 

from X-ray crystallography. Typical resolution of EM single-particle reconstructions are 

~8 – 40Å. Although this can be sufficient in many cases, pseudo-atomic interpretation of 

the reconstructions can be carried out by docking known atomic coordinates. This was 

carried out in the case of HsPrx3 reconstructions, detailed in chapter six. 
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Appendix 2  In house crystallisation screens 

Robot Screen I 

 1 2 3 4 5 6 7 8 9 10 11 12 

A 50% (w/v) 

PEG 400, 0.2 

M Li2SO4, 0.1 

M acetate pH 

5.1 

20% (w/v) 

PEG 3350, 0.2 

M ammonium 

chloride pH 

6.3 

40% (v/v) 

MPD, 5% (w/v) 

PEG 8000, 0.1 

M cacodylate 

pH 7.0 

30% MPD, 

0.02 M CaCl2, 

0.1 M NaOAc 

pH 4.6 

20% ethanol, 

0.1 M Tris pH 

8.5 

30% (w/v) 

PEG 8000, 

0.2 M Li2SO4, 

0.1 M acetate 

pH 4.5 

16% (w/v) 

PEG 8000, 

0.04 M 

KH2PO4, 20% 

glycerol 

1.0 M 

(NH4)2HPO4, 

0.1 M acetate 

pH 4.5 

20% 

Jeffamine M-

600, 0.1 M 

HEPES pH 

6.5 

0.2 M sodium 

chloride, 20% 

PEG 3350 

0.2 M 

magnesium 

nitrate, 20% 

PEG 3350 

0.2 M 

ammonium 

acetate, 20% 

PEG 3350 

B 20% (w/v) 

PEG 3000, 0.1 

M citrate pH 

5.5 

20% (w/v) 

PEG 3350, 0.2 

M potassium 

formate pH 7.3 

40% ethanol, 

5% (w/v) PEG 

1000, 0.1 M 

phosphate-

citrate pH 5.2 

20% (w/v) PEG 

8000, 0.2 M 

NaCl, 0.1 M 

phosphate-

citrate pH 4.2 

25% (v/v) 1,2-

propanediol, 

0.1 M Na/K 

phosphate, 

10% (v/v) 

glycerol pH 6.8 

70% (v/v) 

MPD, 0.2 M 

MgCl2, 0.1 M 

HEPES pH 

7.5 

1.0 M sodium 

citrate, 0.1 M 

cacodylate 

pH 6.5 

1.6 M MgSO4, 

0.1 M MES pH 

6.5 

50% (v/v) 

ethylene 

glycol, 0.2 M 

MgCl2, 0.1 M 

Tris pH 8.5 

0.2 M 

calcium 

chloride, 20% 

PEG 3350 

0.2 M 

sodium 

nitrate, 20% 

PEG 3350 

0.2 M lithium 

sulfate, 20% 

PEG 3350 

C 20% (w/v) 

PEG 3350, 0.2 

M 

diammonium 

hydrogen 

citrate pH 5.0 

50% MPD, 0.2 

M 

(NH4)H2PO4, 

0.1 M Tris pH 

8.5 

8% (w/v) PEG 

4000, 0.1 M 

NaOAc pH 4.6 

20% (w/v) PEG 

6000, 1.0 M 

LiCl, 0.1 M 

citric acid pH 

4.0 

10% (w/v) PEG 

20,000, 2% 

dioxane, 0.1 M 

bicine pH 9.0 

20% (w/v) 

PEG 8000, 

0.1 M Tris pH 

8.5 

2.0 M 

(NH4)2SO4, 

0.2 M NaCl, 

0.1 M 

cacodylate 

pH 6.5 

10% (w/v) PEG 

6000, 0.1 M 

bicine pH 9.0 

10% MPD, 

0.1 M bicine 

pH 9.0 

0.2 M 

potassium 

chloride, 20% 

PEG 3350 

0.2 M 

sodium 

formate, 

20% PEG 

3350 

0.2 M 

magnesium 

sulfate, 20% 

PEG 3350 

D 30% (v/v) 

MPD, 0.02 M 

CaCl2, 0.1 M 

NaOAc pH 4.6 

20% (w/v) 

PEG 3350, 0.2 

M potassium 

nitrate pH 6.9 

10% (w/v) PEG 

8000, 0.2 M 

MgCl2, 0.1 M 

Tris pH 7.0 

20% (w/v) PEG 

3350, 0.2 M 

ammonium 

nitrate pH 6.3 

2.0 M 

(NH4)2SO4, 0.1 

M acetate pH 

4.6 

40% (v/v) 

PEG 400, 0.2 

M Li2SO4, 0.1 

M Tris pH 8.4 

10% 2-

propanol, 0.2 

M NaCl, 0.1 

M HEPES pH 

7.5 

14.4% (w/v) 

PEG 8000, 

0.16 M 

Ca(OAc)2, 0.08 

M cacodylate 

pH 6.5, 20% 

glycerol 

0.2 M sodium 

fluoride, 20% 

PEG 3350 

0.2 M sodium 

iodide, 20% 

PEG 3350 

0.2 M 

magnesium 

acetate, 20% 

PEG 3350 

0.2 M 

sodium 

sulfate, 20% 

PEG 3350 

E 20% (w/v) 

PEG 3350, 0.2 

M magnesium 

formate pH 5.9 

0.8 M 

(NH4)2SO4, 0.1 

M citric acid 

pH 4.0 

20% (w/v) PEG 

6000, 0.1 M 

citric acid pH 

5.0 

10% (w/v) PEG 

6000, 0.1 M 

HEPES pH 7.0 

10% (w/v) PEG 

1000, 10% 

(w/v) PEG 

8000 

40% (v/v) 

MPD, 0.1 M 

Tris pH 8.0 

1.26 M 

(NH4)2SO4, 

0.2 M Li2SO4, 

0.1 M Tris pH 

8.5 

10% (w/v) PEG 

8000, 0.1 M 

imidazole pH 

8.0 

0.2 M 

potassium 

fluoride, 20% 

PEG 3350 

0.2 M 

potassium 

iodide, 20% 

PEG 3350 

0.2 M zinc 

acetate, 20% 

PEG 3350 

0.2 M 

potassium 

sulfate, 20% 

PEG 3350 
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F 20% (w/v) 

PEG 1000, 0.2 

M Li2SO4, 

phosphate-

citrate pH 4.2 

20% (w/v) 

PEG 3350, 0.2 

M sodium 

thiocyanate 

pH 6.9 

50% (v/v) PEG 

200, 0.2 M 

MgCl2, 0.1 M 

cacodylate pH 

6.6 

0.8 M 

NaH2PO4/0.8 

M KH2PO4, 0.1 

M HEPES pH 

7.5 

24% (w/v) PEG 

1500, 20% 

glycerol 

25.5% (w/v) 

PEG 4000, 

0.17 M 

(NH4)2SO4, 

15% glycerol 

40% (v/v) 

MPD, 0.1 M 

CAPS pH 

10.1 

30% Jeffamine 

M-600, 0.05 M 

CsCl, 0.1 M 

MES pH 6.5 

0.2 M 

ammonium 

fluoride, 20% 

PEG 3350 

0.2 M 

ammonium 

iodide, 20% 

PEG 3350 

0.2 M 

sodium 

acetate, 20% 

PEG 3350 

0.2 M 

ammonium 

sulfate, 20% 

PEG 3350 

G 20% (w/v) 

PEG 8000, 0.1 

M CHES pH 

9.5 

20% (w/v) 

PEG 6000, 0.1 

M bicine pH 

9.0 

1.6 M sodium 

citrate pH 6.5 
40% (v/v) PEG 

300, 0.1 M 

phosphate-

citrate pH 5.2 

30% (v/v) PEG 

400, 0.2 M 

MgCl2, 0.1 M 

HEPES pH 7.5 

40% (v/v) 

PEG 300, 0.2 

M Ca(OAc)2, 

0.1 M 

cacodylate 

pH 7.0 

20% (w/v) 

PEG 3000, 

0.2 M 

Zn(OAc)2, 0.1 

M imidazole 

pH 8.0 

3.2 M 

(NH4)2SO4, 0.1 

M citric acid pH 

5.0 

0.2 M lithium 

chloride, 20% 

PEG 3350 

0.2 M 

potassium 

thiocyanate, 

20% PEG 

3350 

0.2 M 

calcium 

acetate, 20% 

PEG 3350 

0.2 M di-

sodium 

tartrate, 20% 

PEG 3350 

H 20% (w/v) 

PEG 3350, 0.2 

M ammonium 

formate pH 6.6 

10% (w/v) 

PEG 8000, 8% 

ethylene 

glycol, 0.1 M 

HEPES pH 7.5 

20% (w/v) PEG 

3350, 0.2 M 

tripotassium 

citrate 

monohydrate 

pH 8.3 

10% (w/v) PEG 

3000, 0.2 M 

Zn(OAc)2, 0.1 

M acetate pH 

4.5 

50% (v/v) PEG 

200, 0.2 M 

NaCl, 0.1 M 

Na/K 

phosphate pH 

7.2 

14% 2-

propanol, 

0.14 M CaCl2, 

0.07 M 

acetate pH 

4.6, 30% 

glycerol 

10% 2-

propanol, 0.2 

M Zn(OAc)2, 

0.1 M 

cacodylate 

pH 6.5 

20% MPD, 0.1 

M Tris pH 8.0 
0.2 M 

magnesium 

chloride, 20% 

PEG 3350 

0.2 M lithium 

nitrate, 20% 

PEG 3350 

0.2 M 

potassium 

acetate, 20% 

PEG 3350 

0.2 M 

potassium 

sodium 

tartrate, 20% 

PEG 3350 
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Robot Screen II 

 1 2 3 4 5 6 7 8 9 10 11 12 

A 0.2 M di-

ammonium 

tartrate, 

20% PEG 

3350 

0.2 M tri-

sodium citrate, 

20% PEG 

3350 

0.2 M tri-

sodium citrate 

dihydrate, 0.1 

M sodium 

cacodylate pH 

6.5, 30% (v/v) 

iso-propanol 

0.1 M HEPES-

Na pH 7.5, 1.5 

M lithium 

sulfate 

monohydrate 

0.2 M calcium 

chloride 

dihydrate, 0.1 

M sodium 

acetate 

trihydrate pH 

4.6, 20% (v/v) 

isopropanol 

4.0 M 

sodium 

formate 

30% (w/v) 

PEG 1500 
25% (v/v) 

ethylene 

glycol 

0.1 M cadmium 

chloride 

dihydrate, 0.1 

M sodium 

acetate 

trihydrate pH 

4.6, 30% (v/v) 

PEG 400 

0.1 M sodium 

dihydrogen 

phosphate 

mono, 0.1 M 

mono-potassium 

dihydrogen 

phosphate, 0.1 

M MES pH 6.5, 

2.0 M sodium 

chloride 

0.1 M sodium 

chloride, 0.1 M 

HEPES pH 

7.5, 1.6 M 

ammonium 

sulfate 

1.5 M 

ammonium 

sulfate, 0.1 M 

Tris pH 8.5, 

12% (v/v) 

glycerol 

anhydrous 

B 0.2 M 

sodium 

dihydrogen 

phosphate, 

20% PEG 

3350 

0.02 M 

calcium 

chloride 

dihydrate, 0.1 

M sodium 

acetate 

trihydrate pH 

4.6, 30% (v/v) 

2-methyl-2,4-

pentanediol 

0.2 M 

ammonium 

acetate, 0.1 M 

tri-sodium 

citrate 

dihydrate pH 

5.6, 30% (w/v) 

PEG 4000 

0.2 M lithium 

sulfate 

monohydrate, 

0.1 M Tris HCl 

pH 8.5, 30% 

PEG 4000 

0.2 M 

ammonium 

acetate, 0.1 M 

tri-sodium 

citrate 

dihydrate pH 

5.6, 30% (v/v) 

2-methyl-2,4-

pentanediol 

0.1 M 

sodium 

acetate 

trihydrate pH 

4.6, 2.0 M 

sodium 

formate 

0.2 M 

magnesium 

formate 

35% (v/v) 

dioxane 
0.2 M 

ammonium 

sulfate, 0.1 M 

sodium acetate 

trihydrate pH 

4.6, 30% (w/v) 

PEGME 2000 

0.1 M MES pH 

6.5, 12% (w/v) 

PEG 20,000 

0.1 M HEPES 

pH 7.5, 2.0 M 

ammonium 

formate 

0.01 M nickel 

(II) chloride 

hexahydrate, 

0.1 M Tris pH 

8.5, 20% (w/v) 

PEGME 2000 

C 0.2 M di-

sodium 

hydrogen 

phosphate, 

20% PEG 

3350 

0.4 M 

potassium 

sodium 

tartrate 

tetrahydrate 

0.2 M 

ammonium 

acetate, 0.1 M 

sodium 

acetate 

trihydrate pH 

4.6, 30% (w/v) 

PEG 4000 

0.2 M 

magnesium 

acetate 

tetrahydrate, 

0.1 M sodium 

cacodylate pH 

6.5, 20% PEG 

8000 

0.2 M tri-

sodium citrate 

dihydrate, 0.1 

M HEPES-Na 

pH 7.5, 20% 

(v/v) 

isopropanol 

0.1 M Tris 

HCl pH 8.5, 

8% (w/v) 

PEG 8000 

0.2 M zinc 

acetate 

dihydrate, 0.1 

M sodium 

cacodylate pH 

6.5, 18% (w/v) 

PEG 8000 

2.0 M 

ammonium 

sulfate, 5% 

(v/v) iso-

propanol 

0.2 M 

potassium 

sodium tartrate 

tetrahydrate, 

0.1 M tri-

sodium citrate 

dihydrate pH 

5.6, 2.0 M 

ammonium 

sulfate 

1.6 M 

ammonium 

sulfate, 0.1 M 

MES pH 6.5, 

10% (v/v) 

dioxane 

0.05 M 

cadmium 

sulfate 

hydrate, 0.1 M 

HEPES pH 

7.5, 1.0 M 

sodium 

acetate 

trihydrate 

0.1 M sodium 

chloride, 0.1 

M bicine pH 

9.0, 20% (w/v) 

PEGME 550 
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D 0.2 M 

potassium 

dihydrogen 

phosphate, 

20% PEG 

3350 

0.4 M mono-

ammonium 

dihydrogen 

phosphate 

0.1 M tri-

sodium citrate 

dihydrate pH 

5.6, 1.0 M 

mono-

ammonium 

dihydrogen 

phosphate 

0.2 M 

ammonium 

acetate, 0.1 M 

Tris HCl, pH 

8.5, 30% (v/v) 

isopropanol 

0.2 M sodium 

acetate 

trihydrate, 0.1 

M sodium 

cacodylate pH 

6.5, 30% (w/v) 

PEG 8000 

0.1 M 

HEPES-Na 

pH 7.5, 1.4 

M tri-sodium 

citrate 

dihydrate 

0.2 M calcium 

acetate 

hydrate, 0.1 M 

sodium 

cacodylate pH 

6.5, 18% (w/v) 

PEG 8000 

1.0 M 

imidazole pH 

7.0 

0.5 M 

ammonium 

sulfate, 0.1 M 

tri-sodium 

citrate 

dihydrate pH 

5.6, 1.0 M 

lithium sulfate 

monohydrate 

0.01 M 

cobaltous 

chloride 

hexahydrate, 

0.1 M MES pH 

6.5, 1.8 M 

ammonium 

sulfate 

0.1 M HEPES 

pH 7.5, 4.3 M 

sodium 

chloride 

0.1 M bicine 

pH 9.0, 2.0 M 

magnesium 

chloride 

hexahydrate 

E 0.2 M di-

potassium 

hydrogen 

phosphate, 

20% PEG 

3350 

0.1 M Tris HCl 

pH 8.5, 2.0 M 

ammonium 

sulfate 

0.2 M 

magnesium 

chloride 

hexahydrate, 

0.1 M HEPES-

Na pH 7.5, 

30% (v/v) iso-

propanol 

0.2 M 

ammonium 

sulfate, 0.1 M 

sodium acetate 

trihydrate pH 

4.6, 25% (w/v) 

PEG 4000 

0.1 M HEPES-

Na pH 7.5, 0.8 

M potassium 

sodium 

tartrate 

tetrahydrate 

0.1 M 

HEPES-Na 

pH 7.5, 2% 

(v/v) PEG 

400, 2.0 M 

ammonium 

sulfate 

0.1 M Tris HCl 

pH 8.5, 2.0 M 

mono-

ammonium 

dihydrogen 

phosphate 

1.5 M 

sodium 

chloride, 

10% (v/v) 

ethanol 

0.5 M sodium 

chloride, 0.1 M 

tri-sodium 

citrate 

dihydrate pH 

5.6, 2% (v/v) 

ethylene imine 

polymer 

0.2 M 

ammonium 

sulfate, 0.1 M 

MES pH 6.5, 

30% (w/v) 

PEGME 5000 

0.1 M HEPES 

pH 7.5, 20% 

(w/v) PEG 

10,000 

3.2 M 

ammonium 

sulfate pH 5.0 

F 0.2 M 

ammonium 

dihydrogen 

phosphate, 

20% PEG 

3350 

0.2 M tri-

sodium citrate 

dihydrate, 0.1 

M HEPES-Na 

pH 7.5, 30% 

(v/v) 2-methyl-

2,4-

pentanediol 

0.2 M tri-

sodium citrate 

dihydrate, 0.1 

M Tris HCl pH 

8.5, 30% (v/v) 

PEG 400 

0.2 M 

magnesium 

acetate 

tetrahydrate, 

0.1 M sodium 

cacodylate pH 

6.5, 30% (v/v) 

2-methyl-2,4-

pentanediol 

0.2 M 

ammonium 

sulfate, 30% 

(w/v) PEG 

8000 

0.1 M tri-

sodium 

citrate 

dihydrate pH 

5.6, 20% 

(v/v) iso-

propanol, 

20% (w/v) 

PEG 4000 

1.0 M lithium 

sulfate 

monohydrate, 

2% (w/v) PEG 

8000 

0.1 M 

sodium 

acetate 

trihydrate pH 

4.6, 2.0 M 

sodium 

chloride 

0.1 M tri-

sodium citrate 

dihydrate pH 

5.6, 35% (v/v) 

tert-butanol 

0.01 M zinc 

sulfate 

heptahydrate, 

0.1 M MES pH 

6.5, 25% (v/v) 

PEGME 550 

0.2 M 

magnesium 

chloride 

hexahydrate, 

0.1 M Tris pH 

8.5, 3.4 M 1,6 

hexanediol 

3.2 M 

ammonium 

sulfate pH 6.0 

G 0.2 M di-

ammonium 

hydrogen 

phosphate, 

20% PEG 

3350 

0.2 M 

magnesium 

chloride 

hexahydrate, 

0.1 M Tris HCl 

pH 8.5, 30% 

(w/v) PEG 

4000 

0.2 M calcium 

chloride 

dihydrate, 0.1 

M HEPES-Na 

pH 7.5, 28% 

(v/v) PEG 400 

0.2 M sodium 

acetate 

trihydrate, 0.1 

M Tris HCl pH 

8.5, 30% (w/v) 

PEG 4000 

0.2 M 

ammonium 

sulfate, 30% 

(w/v) PEG 

4000 

0.1 M 

HEPES-Na 

pH 7.5, 10% 

(v/v) iso-

propanol, 

20% (w/v) 

PEG 4000 

0.5 M lithium 

sulfate 

monohydrate, 

15% (w/v) 

PEG 8000 

0.2 M 

sodium 

chloride, 0.1 

M sodium 

acetate 

trihydrate pH 

4.6, 30% 

(v/v) MPD 

0.01 M ferric 

chloride 

hexahydrate, 

0.1 M tri-

sodium citrate 

dihydrate pH 

5.6, 10% (v/v) 

Jeffamine M-

600 

0.5 M 

ammonium 

sulfate, 0.1 M 

HEPES pH 7.5, 

30% (v/v) MPD 

0.1 M Tris pH 

8.5, 25% (v/v) 

tert-butanol 

3.2 M 

ammonium 

sulfate pH 7.0 
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H 0.2 M tri-

lithium 

citrate, 

20% PEG 

3350 

0.1 M sodium 

cacodylate pH 

6.5, 1.4 M 

sodium 

acetate 

trihydrate 

0.2 M 

ammonium 

sulfate, 0.1 M 

sodium 

cacodylate pH 

6.5, 30% (w/v) 

PEG 8000 

0.2 M 

magnesium 

chloride 

hexahydrate, 

0.1 M HEPES-

Na pH 7.5, 30% 

(v/v) PEG 400 

2.0 M 

ammonium 

sulfate 

0.05 M mono-

potassium 

dihydrogen 

phosphate, 

20% (w/v) 

PEG 8000 

0.01 M 

hexadecyltri-

methylammoni

um bromide, 

0.5 M sodium 

chloride, 0.01 

M magnesium 

chloride 

hexahydrate 

0.01 M 

cobaltous 

chloride 

hexahydrate, 

0.1 M 

sodium 

acetate 

trihydrate pH 

4.6, 1.0 M 

1,6 

hexanediol 

0.1 M tri-

sodium citrate 

dihydrate pH 

5.6, 2.5 M 1,6 

hexanediol 

0.1 M HEPES 

pH 7.5, 10% 

(w/v) PEG 6000, 

5% (v/v) MPD 

0.01 M nickel 

(II) chloride 

hexahydrate, 

0.1 M Tris pH 

8.5, 1.0 M 

lithium sulfate 

monohydrate 

3.2 M 

ammonium 

sulfate pH 8.0 
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Robot Screen III 

 1 2 3 4 5 6 7 8 9 10 11 12 

A 7% (w/v) 

PEG 

6000, 0.2 

M citric 

acid pH 

4.9 

7% (w/v)  

PEG 6000, 

0.2 M 

succinic 

acid/KOH pH 

5.5 

7% (w/v)  

PEG 6000, 

0.2 M 

cacodylic 

acid/KOH pH 

6.1 

7% (w/v) PEG 

6000, 0.2 M 

PIPES/KOH pH 

6.7 

7% (w/v) PEG 

6000, 0.2 M 

MOPS/KOH pH 

7.3 

7% (w/v) PEG 

6000, 0.2 M 

EPPS/KOH 

pH 7.9 

7% (w/v) PEG 

6000, 0.2 M 

bis-tris 

propane/HCl 

pH 8.5 

7% (w/v) PEG 

6000, 0.2 M 

AMPSO/KOH 

pH 9.1 

15% PEG 

600, 0.2 M 

imidazole 

malate pH 5.5 

12.5% PEG 

10,000, 0.2 M 

imidazole 

malate pH 8.5 

1.6 M 

NaH2PO4/ 

K2HPO4 pH 

7.0 

3.2 M 

ammonium 

sulfate pH 

9.0 

B 14% (w/v) 

PEG 

6000, 0.2 

M acetic 

acid pH 

4.9 

14% (w/v) 

PEG 6000, 

0.2 M malic 

acid/KOH pH 

5.5 

14% (w/v) 

PEG 6000, 

0.2 M 

MES/KOH pH 

6.1 

14% (w/v) PEG 

6000, 0.2 M 

bis-tris 

propane/HCl 

pH 6.7 

14% (w/v) PEG 

6000, 0.2 M 

HEPES/KOH 

pH 7.3 

14% (w/v) 

PEG 6000, 

0.2 M Tris/HCl 

pH 7.9 

14% (w/v) PEG 

6000, 0.2 M 

TAPS/KOH pH 

8.5 

14% (w/v) PEG 

6000, 0.2 M 

boric acid/KOH 

pH 9.1 

10% PEG 

4000, 0.2 M 

imidazole 

malate pH 7.0 

1.0 M 

ammonium 

sulfate, 0.15 

M sodium 

citrate pH 5.5 

1.2 M tri-

sdium citrate, 

10 mM 

sodium borate 

pH 8.5 

2.4 M 

ammonium 

sulfate pH 

5.0 

C 21% (w/v) 

PEG 

6000, 0.2 

M citric 

acid pH 

4.9 

21% (w/v) 

PEG 6000, 

0.2 M 

succinic 

acid/KOH pH 

5.5 

21% (w/v) 

PEG 6000, 

0.2 M 

cacodylic 

acid/KOH pH 

6.1 

21% (w/v) PEG 

6000, 0.2 M 

PIPES/KOH pH 

6.7 

21% (w/v) PEG 

6000, 0.2 M 

MOPS/KOH pH 

7.3 

21% (w/v) 

PEG 6000, 

0.2 M 

EPPS/KOH 

pH 7.9 

21% (w/v) PEG 

6000, 0.2 M 

bis-tris 

propane/HCl 

pH 8.5 

21% (w/v) PEG 

6000, 0.2 M 

AMPSO/KOH 

pH 9.1 

7.5% PEG 

10,000, 0.2 M 

imidazole 

malate pH 8.5 

1.32 M 

NaH2PO4/ 

K2HPO4 pH 

7.0 

42% PEG 

600, 0.2 M 

imidazole 

malate pH 5.5 

2.4 M 

ammonium 

sulfate pH 

6.0 

D 28% (w/v) 

PEG 

6000, 0.2 

M acetic 

acid pH 

4.9 

28% (w/v) 

PEG 6000, 

0.2 M malic 

acid/KOH pH 

5.5 

28% (w/v) 

PEG 6000, 

0.2 M 

MES/KOH pH 

6.1 

28% (w/v) PEG 

6000, 0.2 M 

bis-tris 

propane/HCl 

pH 6.7 

28% (w/v) PEG 

6000, 0.2 M 

HEPES/KOH 

pH 7.3 

28% (w/v) 

PEG 6000, 

0.2 M Tris/HCl 

pH 7.9 

28% (w/v) PEG 

6000, 0.2 M 

TAPS/KOH pH 

8.5 

28% (w/v) PEG 

6000, 0.2 M 

boric acid/KOH 

pH 9.1 

0.75 M 

ammonium 

sulfate, 0.15 M 

sodium citrate 

pH 5.5 

1.0 M tri-

sdium citrate, 

10 mM 

sodium borate 

pH 8.5 

25% PEG 

4000, 0.2 M 

imidazole 

malate pH 7.0 

2.4 M 

ammonium 

sulfate pH 

7.0 

E 7% (w/v) 

MPEG 

5000, 0.2 

M acetic 

acid pH 

4.9 

7% (w/v) 

MPEG 5000, 

0.2 M malic 

acid/KOH pH 

5.5 

7% (w/v) 

MPEG 5000, 

0.2 M 

MES/KOH pH 

6.1 

7% (w/v) MPEG 

5000, 0.2 M 

bis-tris 

propane/HCl 

pH 6.7 

7% (w/v) 

MPEG 5000, 

0.2 M 

HEPES/KOH 

pH 7.3 

7% (w/v) 

MPEG 5000, 

0.2 M Tris/HCl 

pH 7.9 

7% (w/v) MPEG 

5000, 0.2 M 

TAPS/KOH pH 

8.5 

7% (w/v) MPEG 

5000, 0.2 M 

boric acid/KOH 

pH 9.1 

0.8 M 

NaH2PO4/ 

K2HPO4 pH 

7.0 

33% PEG 

600, 0.2 M 

imidazole 

malate pH 5.5 

22.5% PEG 

10,000, 0.2 M 

imidazole 

malate pH 8.5 

2.4 M 

ammonium 

sulfate pH 

8.0 
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F 14% (w/v) 

MPEG 

5000, 0.2 

M citric 

acid pH 

4.9 

14% (w/v) 

MPEG 5000, 

0.2 M 

succinic 

acid/KOH pH 

5.5 

14% (w/v) 

MPEG 5000, 

0.2 M 

cacodylic 

acid/KOH pH 

6.1 

14% (w/v) 

MPEG 5000, 

0.2 M 

PIPES/KOH pH 

6.7 

14% (w/v) 

MPEG 5000, 

0.2 M 

MOPS/KOH pH 

7.3 

14% (w/v) 

MPEG 5000, 

0.2 M 

EPPS/KOH 

pH 7.9 

14% (w/v) 

MPEG 5000, 

0.2 M bis-tris 

propane/HCl 

pH 8.5 

14% (w/v) 

MPEG 5000, 

0.2 M 

AMPSO/KOH 

pH 9.1 

0.75 M tri-

sdium citrate, 

10 mM sodium 

borate pH 8.5 

20% PEG 

4000, 0.2 M 

imidazole 

malate pH 7.0 

2.0 M 

ammonium 

sulfate, 0.15 

M sodium 

citrate pH 5.5 

2.4 M 

ammonium 

sulfate pH 

9.0 

G 21% (w/v) 

MPEG 

5000, 0.2 

M acetic 

acid pH 

4.9 

21% (w/v) 

MPEG 5000, 

0.2 M malic 

acid/KOH pH 

5.5 

21% (w/v) 

MPEG 5000, 

0.2 M 

MES/KOH pH 

6.1 

21% (w/v) 

MPEG 5000, 

0.2 M bis-tris 

propane/HCl 

pH 6.7 

21% (w/v) 

MPEG 5000, 

0.2 M 

HEPES/KOH 

pH 7.3 

21% (w/v) 

MPEG 5000, 

0.2 M Tris/HCl 

pH 7.9 

21% (w/v) 

MPEG 5000, 

0.2 M 

TAPS/KOH pH 

8.5 

21% (w/v) 

MPEG 5000, 

0.2 M boric 

acid/KOH pH 

9.1 

24% PEG 

600, 0.2 M 

imidazole 

malate pH 5.5 

17.5% PEG 

10,000, 0.2 M 

imidazole 

malate pH 8.5 

2.0 M 

NaH2PO4/ 

K2HPO4 pH 

7.0 

1.6 M 

ammonium 

sulfate pH 

5.0 

H 28% (w/v) 

MPEG 

5000, 0.2 

M citric 

acid pH 

4.9 

28% (w/v) 

MPEG 5000, 

0.2 M 

succinic 

acid/KOH pH 

5.5 

28% (w/v) 

MPEG 5000, 

0.2 M 

cacodylic 

acid/KOH pH 

6.1 

28% (w/v) 

MPEG 5000, 

0.2 M 

PIPES/KOH pH 

6.7 

28% (w/v) 

MPEG 5000, 

0.2 M 

MOPS/KOH pH 

7.3 

28% (w/v) 

MPEG 5000, 

0.2 M 

EPPS/KOH 

pH 7.9 

28% (w/v) 

MPEG 5000, 

0.2 M bis-tris 

propane/HCl 

pH 8.5 

28% (w/v) 

MPEG 5000, 

0.2 M 

AMPSO/KOH 

pH 9.1 

15% PEG 

4000, 0.2 M 

imidazole 

malate pH 7.0 

1.5 M 

ammonium 

sulfate, 0.15 

M sodium 

citrate pH 5.5 

1.5 M tri-

sdium citrate, 

10 mM 

sodium borate 

pH 8.5 

1.6 M 

ammonium 

sulfate pH 

6.0 
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Robot Screen IV 

 1 2 3 4 5 6 7 8 9 10 11 12 

A 0.2 M 

cadmium 

chloride, 40% 

(v/v) MPD 

0.2 M 

ammonium 

chloride, 40% 

(v/v) MPD 

0.2 M sodium 

nitrate, 40% 

(v/v) MPD 

0.2 M 

magnesium 

acetate 

tetrahydrate, 

40% (v/v) MPD 

0.2 M cesium 

chloride, 40% 

(v/v) MPD 

0.2 M sodium 

bromide, 40% 

(v/v) MPD 

0.1 M citric 

acid pH 4.0, 

10% (v/v) 

MPD 

0.1 M MES 

pH 6.0, 20% 

(v/v) MPD 

0.1 M Tris 

pH 8.0, 40% 

(v/v) MPD 

0.1 M tri-sodium 

citrate dihydrate, 

0.1 M HEPES 

sodium salt pH 

7.5, , 10% (w/v) 

MPD 

0.1 M imidazole 

HCl pH 8.0, 

20% (w/v) MPD 

0.1 M 

imidazole-

HCl pH 8.0, 

30% (w/v) 

MPD, 10% 

(w/v) PEG 

4000 

B 0.2 M 

potassium 

fluoride, 40% 

(v/v) MPD 

0.2 M sodium 

iodide, 40% 

(v/v) MPD 

0.2 M 

potassium 

nitrate, 40% 

(v/v) MPD 

0.2 M sodium 

malonate, 40% 

(v/v) MPD 

0.2 M ferric 

chloride, 40% 

(v/v) MPD 

0.2 M di-

potassium 

hydrogen 

phosphate, 

40% (v/v) MPD 

0.1 M 

sodium 

acetate 

anhydrous 

pH 5.0, 10% 

(v/v) MPD 

0.1 M 

HEPES pH 

7.0, 20% 

(v/v) MPD 

0.1 M bicine 

pH 9.0, 40% 

(v/v) MPD 
0.05 M 

magnesium 

chloride 

heptahydrate, 

0.1 M Tris-HCl 

pH 8.5, 12% 

(w/v) MPD 

0.2 M sodium 

chloride, 20% 

(w/v) MPD, 4% 

(w/v) glycerol 

30% (w/v) 

MPD, 20%  

(w/v) ethanol 

C 0.2 M 

ammonium 

fluoride, 40% 

(v/v) MPD 

0.2 M 

potassium 

iodide, 40% 

(v/v) MPD 

0.2 M 

ammonium 

nitrate, 40% 

(v/v) MPD 

0.2 M sodium 

acetate 

trihydrate, 40% 

(v/v) MPD 

0.2 M 

ammonium 

sulfate, 40% 

(v/v) MPD 

0.2 M 

ammonium 

dihydrogen 

phosphate, 

40% (v/v) MPD 

0.1 M MES 

pH6.0, 10% 

(v/v) MPD 

0.1 M Tris 

pH 8.0, 20% 

(v/v) MPD 

0.1 M citric 

acid pH 4.0, 

65% (v/v) 

MPD 

0.02 M calcium 

chloride 

dihydrate, 0.1 M 

sodium acetate 

pH 4.6, 15% 

(w/v) MPD 

0.02 M calcium 

chloride 

dihydrate, 0.1 

M sodium 

acetate pH 4.6, 

30% (w/v) MPD 

35% (w/v) 

MPD 

D 0.2 M lithium 

chloride 

anhydrous, 

40% (v/v) 

MPD 

0.2 M 

ammonium 

iodide, 40% 

(v/v) MPD 

0.2 M zinc 

sulfate 

heptahydrate, 

40% (v/v) 

MPD 

0.2 M calcium 

acetate 

hydrate, 40% 

(v/v) MPD 

0.2 M di-

sodium tartrate 

dihydrate, 40% 

(v/v) MPD 

0.2 M di-

ammonium 

hydrogen 

phosphate, 

40% (v/v) MPD 

0.1 M 

HEPES pH 

7.0, 10% 

(v/v) MPD 

0.1 M bicine 

pH 9.0, 20% 

(v/v) MPD 

0.1 M 

sodium 

acetate 

anhydrous 

pH 5.0, 65% 

(v/v) MPD 

0.1 M imidazole-

HCl pH 8.0, 

15% (w/v) MPD, 

5% (w/v) PEG 

4000 

0.2 M 

ammonium 

acetate, 0.1 M 

sodium citrate 

pH 5.6, 30% 

(w/v) MPD 

0.1 M 

imidazole 

HCl pH 8.0, 

35% (w/v) 

MPD 

E 0.2 M 

magnesium 

chloride 

hexahydrate, 

0.2 M sodium 

thiocyanate, 

40% (v/v) 

0.2 M sodium 

formate, 40% 

(v/v) MPD 

0.2 M 

potassium 

acetate, 40% 

0.2 M 

potassium 

sodium tartrate 

tetrahydrate, 

0.2 M tri-

lithium citrate 

tetrahydrate, 

0.1 M Tris 

pH 8.0, 10% 

(v/v) MPD 

0.1 M citric 

acid, 40% 

(v/v) MPD 

0.1 M MES 

pH 6.0, 65% 

(v/v) MPD 

0.2 M 

ammonium 

acetate, 0.1 M 

sodium citrate 

0.2 M 

magnesium 

acetate 

tetrahydrate, 

0.1 M Tris-

HCl pH 8.5, 

40% (w/v) 
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40% (v/v) 

MPD 
MPD (v/v) MPD 40% (v/v) MPD 40% (v/v) MPD pH 5.6, 15% 

(w/v) MPD 
0.1 M MES 

sodium salt pH 

6.5, 30% (w/v) 

MPD 

MPD 

F 0.2 M sodium 

chloride, 40% 

(v/v) MPD 

0.2 M 

potassium 

thiocyanate, 

40% (v/v) 

MPD 

0.2 M 

potassium 

formate, 40% 

(v/v) MPD 

0.2 M 

ammonium 

acetate, 40% 

(v/v) MPD 

0.2 M di-

ammonium 

tartrate, 40% 

(v/v) MPD 

0.2 M tri-

sodium citrate 

dihydrate, 40% 

(v/v) MPD 

0.1 M bicine 

pH 9.0, 10% 

(v/v) MPD 

0.1 M 

sodium 

acetate 

anhydrous 

pH 5.0, 40% 

(v/v) MPD 

0.1 M 

HEPES pH 

7.0, 65% 

(v/v) MPD 

0.2 M 

magnesium 

acetate, 0.1 M 

MES sodium 

salt pH 6.5, 15% 

(w/v) MPD 

0.5 M 

ammonium 

sulfate, 0.1 M 

HEPES sodium 

salt pH 7.5, 

30% (w/v) MPD 

0.1 M 

HEPES 

sodium salt 

pH 7.5, 47% 

(w/v) MPD 

G 0.2 M calcium 

chloride 

dihydrate, 

40% (v/v) 

MPD 

0.2 M lithium 

nitrate, 40% 

(v/v) MPD 

0.2 M 

ammonium 

formate, 40% 

(v/v) MPD 

0.2 M lithium 

sulfate 

monohydrate, 

40% (v/v) MPD 

0.2 M sodium 

dihydrogen 

phosphate 

monohydrate, 

40% (v/v) MPD 

0.2 M tri-

potassium 

citrate 

monohydrate, 

40% (v/v) MPD 

0.1 M citric 

acid pH 4.0, 

20% (v/v) 

MPD 

0.1 M MES 

pH 6.0, 40% 

(v/v) MPD 

0.1 M Tris 

pH 8.0, 65% 

(v/v) MPD 

0.2 M tri-sodium 

citrate dihydrate, 

0.1 M HEPES 

sodium salt pH 

7.5, 15% (w/v) 

MPD 

0.2 M tri-

sodium citrate 

dihydrate, 0.1 

M HEPES 

sodium salt pH 

7.5, 30% (w/v) 

MPD 

47% (w/v) 

MPD, 2% 

(w/v) tert-

butanol 

H 0.2 M 

potassium 

chloride, 40% 

(v/v) MPD 

0.2 M 

magnesium 

nitrate 

hexahydrate, 

40% (v/v) 

MPD 

0.2 M lithium 

acetate 

dihydrate, 

40% (v/v) 

MPD 

0.2 M 

magnesium 

sulfate 

heptahydrate, 

40% (v/v) MPD 

0.2 M 

potassium 

bromide, 40% 

(v/v) MPD 

0.2 M di-

ammnoium 

hydrogen 

citrate, 40% 

(v/v) MPD 

0.1 M 

sodium 

acetate 

anhydrous 

pH 5.0, 20% 

(v/v) MPD 

0.1 M 

HEPES pH 

7.0, 40% 

(v/v) MPD 

0.1 M bicine 

pH 9.0, 65% 

(v/v) MPD 

0.1 M tri-sodium 

citrate dihydrate, 

0.1 M HEPES 

sodium salt pH 

7.5, 20% (w/v) 

MPD 

0.1 M HEPES 

sodium salt pH 

7.5, 30% (w/v) 

MPD, 5% (w/v) 

PEG 4000 

50% (w/v) 

MPD 
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Robot Screen V  

 1 2 3 4 5 6 7 8 9 10 11 12 

A 2 M Am2SO4, 

2% PEG 400 

(pH 5.5) 

2 M NaKPO4, 

2% PEG400 

(pH 6.5) 

2 M Li2SO4, 

8% MPD (pH 

6.5) 

1 M 

AmCitrate, 

15% 

isopropanol 

(pH 8.5) 

10% PEG 

1500, 30% 

isopropanol, 

0.2 M Li2SO4 

(pH 5.5) 

20% PEG 

3350, 25% 

PEG 400, 0.1 

M MgCl2 (pH 

8.5) 

25% PEG 

3350, 4% 

isopropanol, 

0.1 M CaCl2 

(pH 7.5) 

2.5 M NaCl, 

12% PEG 

1500, 1.5% 

MPD (pH 5.5) 

0.3 M Na 

acetate, 25% 

PEG 2000 

MME 

0.2 M MgCl2, 

15% PEG 

4000 

0.2 M KSCN, 

10% PEG 

8000, 10% 

PEG 1000 

1.6 M 

ammonium 

sulfate pH 

7.0 

B 2 M Am2SO4, 

10% glycerol, 

0.1 M MgSO4 

(pH 6.5) 

2.5 M 

NaKPO4, 

20% Glycerol 

(pH 7.5) 

2 M Li2SO4, 

2% PEG 400 

(pH 8.5) 

2 M 

NaFormate, 

2.5% PEG 

3350, 15% 

isopropanol 

(pH 8.5) 

15% PEG 

8000, 40% 

isopropanol 

(pH 6.5) 

30% PEG 

1500, 3% 

MPD, 0.2 M 

MgSO4 (pH 

5.5) 

20% PEG 

8000, 10% 

PEG 400, 0.5 

M NaCl (pH 

5.5) 

3 M NaCl, 

20% PEG 

3350, 0.1 M 

MgCl2 (pH 

6.5) 

0.2 M Li2SO4, 

25% PEG 

2000 MME 
0.2 M KBr, 

15% PEG 

4000 

0.8 M Na 

formate, 10% 

PEG 8000, 

10% PEG 

1000 

1.6 M 

ammonium 

sulfate pH 

8.0 

C 2 M Am2SO4, 

1% MPD (pH 

7.5) 

1 M NaKPO4, 

8% MPD (pH 

8.5) 

1 M Li2SO4, 

15% MPD, 

0.1 M MgSO4 

(pH 4.5) 

25% PEG 

1500, 30% 

MPD (pH 4.5) 

15% PEG 

3350, 20 % 

isopropanol, 

0.2 M 

AmCitrate 

(pH 7.5) 

30% PEG 

1500, 10% 

isopropanol, 

0.1 M CaCl2 

(pH 6.5) 

20% PEG 

8000, 3% 

MPD (pH 6.5) 

3 M 

NaFormate, 

4% PEG 

8000 (pH 6.5) 

0.2 M MgCl2, 

25% PEG 

2000 MME 

0.2 M KSCN, 

15% PEG 

4000 

0.3 M Na 

acetate, 8% 

PEG 20,000, 

8% PEG 550 

MME 

1.6 M 

ammonium 

sulfate pH 

9.0 

D 2 M Am2SO4, 

5% PEG 400, 

0.1 M MgSO4 

(pH 8.5) 

2 M 

AmCitrate, 

1% MPD (pH 

4.5) 

0.75 M 

AmCitrate, 

25% MPD 

(pH 5.5) 

15% PEG 

8000, 30% 

MPD, 0.1 M 

CaCl2 (pH 

5.5) 

30% PEG 

3350, 30% 

isopropanol 

(pH 8.5) 

30% PEG 

1500, 20% 

PEG 400 (pH 

7.5) 

20% PEG 

8000, 10% 

isopropanol, 

0.2 M 

Am2SO4 (pH 

7.5) 

1 M NaKPO4, 

0.5% PEG 

4000 (pH 7.5) 

0.2 M KBr, 

25% PEG 

2000 MME 

0.8 M Na 

formate, 15% 

PEG 4000 

0.2 M Li2SO4, 

8% PEG 

20,000, 8% 

PEG 550 

MME 

0.8 M 

ammonium 

sulfate pH 

5.0 

E 4 M NaCl, 

2% PEG 400, 

0.1 M MgCl2 

(pH 5.5) 

2 M 

AmCitrate, 

5% 

isopropanol 

(pH 6.5) 

1.5 M 

Am2SO4, 

12% 

isopropanol 

(pH 6.5) 

10% PEG 

3350, 30% 

MPD, 0.2 M 

Am2SO4 (pH 

6.5) 

20% PEG 

8000, 40% 

PEG 400 (pH 

4.5) 

30% PEG 

1500, 8% 

MPD (pH 8.5) 

20% PEG 

8000, 20% 

PEG 400, 0.1 

M MgCl2 (pH 

8.5) 

1.4 M 

NaKPO4, 

10% PEG 

3350 (pH 7.5) 

0.2 M KSCN, 

25% PEG 

2000 MME 

0.3 M Na 

acetate, 10% 

PEG 8000, 

10% PEG 

1000 

0.2 M MgCl2, 

8% PEG 

20,000, 8% 

PEG 550 

MME 

0.8 M 

ammonium 

sulfate pH 

6.0 

F 3 M NaCl, 

5% MPD, 0.1 

M CaCl2 (pH 

2 M 

AmCitrate, 

5% PEG 400 

1.3 M NaCl, 

30% 

isopropanol, 

4% PEG 

1500, 30% 

5% PEG 

3350, 40% 

PEG 400 (pH 

25% PEG 

3350, 15% 

isopropanol, 

3 M 

NaFormate, 

25% PEG 

0.8 M 

AmCitrate, 

2% PEG 

0.8 M Na 

formate, 25% 

PEG 2000 

0.2 M Li2SO4, 

10% PEG 

8000, 10% 

0.2 M KBr, 

8% PEG 

20,000, 8% 

0.8 M 

ammonium 

sulfate pH 
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6.5) (pH 7.5) 0.1 M CaCl2 

(pH 6.5) 
MPD (pH 7.5) 5.5) 0.2 M 

AmCitrate 

(pH 4.5) 

3350, 0.1 M 

CaCl2 (pH 

4.5) 

8000 (pH 8.5) MME PEG 1000 PEG 550 

MME 
7.0 

G 4 M NaCl, 

5% 

isopropanol 

(pH 7.5) 

2 M Li2SO4, 

5% 

isopropanol, 

0.1 M MgSO4 

(pH 4.5) 

4 M NaCl, 

10% PEG 

400 (pH 7.5) 

8% PEG 

8000, 30% 

MPD, 0.5 M 

NaCl (pH 8.5) 

15% PEG 

1000, 40% 

PEG 400, 

0.15 M 

NaKPO4 (pH 

6.5) 

25% PEG 

3350, 5% 

PEG 400 (pH 

5.5) 

0.75 M 

Am2SO4, 

7.5% PEG 

3350, 5% 

isopropanol 

(pH 4.5) 

2 M NaCl, 

5% PEG 

4000 (pH 8.5) 

0.3 M Na 

acetate, 15% 

PEG 4000 

0.2 M MgCl2, 

10% PEG 

8000, 10% 

PEG 1000 

0.2 M KSCN, 

8% PEG 

20,000, 8% 

PEG 550 

MME 

0.8 M 

ammonium 

sulfate pH 

8.0 

H 2.5 M 

NaKPO4, 5% 

isopropanol 

(pH 5.5) 

2 M Li2SO4, 

5% PEG 400, 

0.1 M MgSO4 

(pH 5.5) 

0.8 M 

NaKPO4, 

20% PEG 

400 (pH 7.5) 

4% PEG 

3350, 30% 

isopropanol, 

0.1 M CaCl2 

(pH 4.5) 

8% PEG 

8000, 40% 

PEG 400 (pH 

7.5) 

25% PEG 

3350, 15% 

MPD, 0.2 M 

Li2SO4 (pH 

6.5) 

1 M 

AmCitrate, 

1% PEG 

4000 (pH 5.5) 

0.5 M 

AmCitrate, 

15% PEG 

8000 (pH 8.5) 

0.2 M Li2SO4, 

15% PEG 

4000 

0.2 M KBr, 

10% PEG 

8000, 10% 

PEG 1000 

0.8 M Na 

formate, 8% 

PEG 20,000, 

8% PEG 550 

MME 

0.8 M 

ammonium 

sulfate pH 

9.0 
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Appendix 3  MtAhpE information 

 

pProEx Hta vector map 

Map and sequence of the pProEx Hta vector are shown below. When used for expression 

the gene of interest (Rv2338c, detailed below) was cloned in using NcoI and SacI 

restriction sites in the multiple cloning region. The point of insertion is indicated by a red 

star in the vector sequence. 

 

 

Figure A3.1: pProEX HTa vector map (Invitrogen): This vector was used for routine expression 

of MtAhpE protein.
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Vector sequence 

GTTTGACAGCTTATCATCGACTGCACGGTGCACCAATGCTTCTGGCGTCAGGCAGCCATCGGAAGCTG

TGGTATGGCTGTGCAGGTCGTAAATCACTGCATAATTCGTGTCGCTCAAGGCGCACTCCCGTTCTGGAT

AATGTTTTTTGCGCCGACATCATAACGGTTCTGGCAAATATTCTGAAATGAGCTGTTGACAATTAATCAT

CCGGTCCGTATAATCTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGACCATGTCGTACT

ACCATCACCATCACCATCACGATTACGATATCCCAACGACCGAAAACCTGTATTTTCAGGGCGCC*ATG

GATCCGGAATTCAAAGGCCTACGTCGACGAGCTCAACTAGTGCGGCCGCTTTCGAATCTAGAGCCTGC

AGTCTCGAGGCATGCGGTACCAAGCTTGGCTGTTTTGGCGGATGAGAGAAGATTTTCAGCCTGATACA

GATTAAATCAGAACGCAGAAGCGGTCTGATAAAACAGAATTTGCCTGGCGGCAGTAGCGCGGTGGTCC

CACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGCCGATGGTAGTGTGGGGTCTCCCCA

TGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGT

TTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTT

GCGAAGCAACGGCCCGGAGGGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGCATCAAATTAAG

CAGAAGGCCATCCTGACGGATGGCCTTTTTGCGTTTCTACAAACTCTTTTTGTTTATTTTTCTAAATACAT

TCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTA

TGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCAC

CCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT

GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTT

TAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCA

TACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGA

CAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAA

CGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGAT

CGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTACAGCAAT

GGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA

CTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTG

CTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAA

GCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGA

TCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTA

GATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCA

AAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTT

GAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTT

GTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAA

ATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACC

TCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGAC

TCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCA

GCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTT

CCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGG

GAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCG

TCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTAC

GGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAA

CCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCA

GTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACA

CCGCATAATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAA

TCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACA

AGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGC

CCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAAC

CCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGA

AGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCA

CACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCCATTCGCCATTCAGGCTGCTATGGTGCACT

CTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGG

TCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGC

ATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCAC
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CGAAACGCGCGAGGCAGCAGATCAATTCGCGCGCGAAGGCGAAGCGGCATGCATTTACGTTGACACC

ATCGAATGGTGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGT

GAATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCG

CGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAG

CTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGC

CACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAAC

TGGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCA

CAATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACCAGGATGCCATTG

CTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACA

GTATTATTTTCTCCCATGAAGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAG

CAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAA

ATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTT

TTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGA

TGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGT

GGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTTAACCACCATCAAACAGGATTTTCG

CCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAAT

CAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCACCCAATACGCAAACCGCCTCTCC

CCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGA

GCGCAACGCAATTAATGTGAGTTAGCGCGAATTGATCTG 

 

Rv2338c nucleotide sequence 

The 462 bp sequence of the gene encoding the M. tuberculosis protein AhpE as cloned 

into the pProEx vector is shown below. Underlined bases indicate flanking nucleotides 

that were cloned out of the genome along with the gene of interest. The sequence was 

cloned into pProEx using NcoI and SacI restriction enzymes.  

 

ATGGTGAACGTCGGAGCCACCGCCCCTGACTTCACGTTGCGCGACCAGAATCAGCAGCTTGTCACCCT

GCGCGGCTACCGGGGTGCAAAGAACGTGCTGTTGGTGTTCTTTCCGTTGGCGTTCACGGGCATCTGCC

AGGGCGAGCTGGACCAGTTGCGTGATCACCTGCCCGAGTTTGAGAACGACGACAGCGCCGCGCTAGC

GATTTCGGTGGGCCCGCCACCCACTCACAAGATCTGGGCGACGCAGAGCGGATTCACGTTTCCGCTGT

TGTCGGACTTCTGGCCACACGGCGCGGTCAGTCAGGCCTACGGCGTCTTCAACGAGCAGGCCGGCAT

CGCTAACCGGGGCACCTTTGTGGTCGATCGGTCAGGGATCATTCGGTTCGCCGAGATGAAGCAGCCG

GGTGAAGTTCGCGATCAGCGGCTGTGGACCGACGCTCTGGCGGCGCTTACGGCCTAAGGTTTTGGGT

GCTTGGCCGCAAGGCGTGTAGCCTGCGGCGGTCATGGGCGCGTAGCTCAGCGGTA 

 

MtAhpE amino acid sequence 

Underlining indicates the his-tag and linker residues conferred by the pProEx vector, 

TEV cleavage site is indicated by a red star. 
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MSYYHHHHHHDYDIPTTENLYFQ*GAMVNVGATAPDFTLRDQNQQLVTLRGYRGAKNVLLVFFPLAFTGIC

QGELDQLRDHLPEFENDDSAALAISVGPPPTHKIWATQSGFTFPLLSDFWPHGAVSQAYGVFNEQAGIANR

GTFVVDRSGIIRFAEMKQPGEVRDQRLWTDALAALTA 

 

 

Important parameters for MtAhpE 

Extinction coefficients and molecular masses were used for calculation of protein 

concentration (section 2.3.5.2), identification of MtAhpE and monitoring the efficiency of 

rTEV cleavage (section 2.3.5.3).  

Construct Molecular 

Mass 

(kDa) 

Number 

of 

residues 

Theoretical 

pI 

Extinction 

Coefficient 

(M
-1

 cm
-1

) 

Native 

MtAhpE 
16.8 153 5.24 

Oxidised: 1.16 

Reduced: 1.16 

Cleaved  

MtAhpE 
16.9 155 5.24 

Oxidised: 1.15 

Reduced: 1.15 

His-tagged 

MtAhpE 
19.9 178 5.62 

Oxidised: 1.28 

Reduced: 1.28 

Cleaved 

E109A 
16.9 155 5.5 

Oxidised: 1.15 

Reduced: 1.15 

His-tagged 

E109A 
19.8 178 5.77 

Oxidised: 1.28 

Reduced: 1.28 

Cleaved 

W95A 
16.8 155 5.24 

Oxidised: 0.83 

Reduced: 0.83 

His-tagged 

W95A 
19.8 178 5.62 

Oxidised: 1.01 

Reduced: 1.01 

Cleaved  

T76A 
16.9 155 5.24 

Oxidised: 1.15 

Reduced: 1.15 

His-tagged 

T76A 
19.9 178 5.62 

Oxidised: 1.28 

Reduced: 1.28 

Cleaved 

Q83A 
16.9 155 5.24 

Oxidised: 1.15 

Reduced: 1.15 

His-tagged 

Q83A 
19.8 178 5.63 

Oxidised: 1.28 

Reduced: 1.28 

 

Location of rare codons in the MtAhpE nucleotide sequence  

Rare leucine codons are highlighted in green, and proline in orange. BL21 Rosetta (DE3) 

cells complement all rare codons. 
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atg gtg aac gtc gga gcc acc gcc cct gac ttc acg ttg cgc gac 

cag aat cag cag ctt gtc acc ctg cgc ggc tac cgg ggt gca aag 

aac gtg ctg ttg gtg ttc ttt ccg ttg gcg ttc acg ggc atc tgc 

cag ggc gag ctg gac cag ttg cgt gat cac ctg CCC gag ttt gag 

aac gac gac agc gcc gcg CTA gcg att tcg gtg ggc ccg cca 

CCC act cac aag atc tgg gcg acg cag agc gga ttc acg ttt ccg 

ctg ttg tcg gac ttc tgg cca cac ggc gcg gtc agt cag gcc tac 

ggc gtc ttc aac gag cag gcc ggc atc gct aac cgg ggc acc ttt 

gtg gtc gat cgg tca ggg atc att cgg ttc gcc gag atg aag cag 

ccg ggt gaa gtt cgc gat cag cgg ctg tgg acc gac gct ctg gcg 

gcg ctt acg gcc taa  

Mutein purifications 

W95A 

 
A: IMAC elution profile B: Typical SDS-PAGE gel showing 

fractions of      IMAC elution  

Figure A3.2: A: Typical elution profile of IMAC purification of W95A mutein. Protein eluted as 

a single peak around 500 mM imidazole concentration. B: Gel showing IMAC fractions. Lanes 2-

4 show selected fractions across the peak from the elution profile (A). SDS-resistant dimers were 

sometimes seen in small amounts (the faint band at 50 kDa). These were seen in the case of 

HsPrx3 as well, and appear to be a feature of Prxs as they have been reported by other groups 

(discussed in chapter five). 
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A: Typical gel filtration elution profile B: SDS-PAGE gel showing fractions of gel     

filtration purification 

Figure A3.3: Typical gel filtration purification of W95A mutein: A: Gel filtration elution 

profile showed that the mutein eluted at around 90 mL, as a single peak. A small peak was seen 

near the void volume. B: Selected fractions across (lanes 2-4) the small early eluting peak; and 

(lanes 5-7) the main peak at 90 mL.  

 

T76A 

 
A: IMAC elution profile                  B: Typical purification gel 

Figure A3.4: A: Typical elution profile of IMAC purification of T76A mutein. Protein eluted as 

a single peak around 250 mM imidazole concentration. B: Gel showing IMAC fractions. Lanes 2-

4 show selected fractions across the main peak from the elution profile (A). 

L
a
d
d

e
r 

3.5 kDa 

 15 kDa 

 20 kDa 
 30 kDa 

 40 kDa 
50 kDa 

60 kDa 

Molecular 
Weight 
(kDa) 

2   3   4    5    6    7            

80 kDa 
110 kDa 

10 kDa 

160 kDa 
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A: Typical gel filtration elution profile B: SDS-PAGE gel showing fractions of gel     

filtration purification 

Figure A3.5: Typical gel filtration purification of T76A mutein: A: Gel filtration elution 

profile showed that the mutein eluted at around 90 mL, as a single peak with a small shoulder. B: 

Selected fractions across (lanes 2-3) the early eluting shoulder peak; and (lanes 4-9) the main 

peak at 90 mL. 
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Appendix 4  HsPrx3 information 

 

pET151/D-TOPO vector map 

 

Map and sequence of the pET151 vector are shown below (Invitrogen). When used for 

expression the gene of interest (NM_006793, detailed below) was cloned in without the 

mitochondrial leader sequence. 

 

 
 

Vector sequenc 

 

CAAGGAGATGGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGC

GCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCA

ACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCC

CGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTG

TTTAACTTTAAGAAGGAGATATACATATGCATCATCACCATCACCATGGTAAGCCTATCCCTAACCCTCT

CCTCGGTCTCGATTCTACGGAAAACCTGTATTTTCAGGGAATTGATCCCTTCACCAAGGGCGAGCTCAG

ATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCA

TAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATAT

CCCGCAAGAGGCCCGGCAGTACCGGCATAACCAAGCCTATGCCTACAGCATCCAGGGTGACGGTGCC

GAGGATGACGATGAGCGCATTGTTAGATTTCATACACGGTGCCTGACTGCGTTAGCAATTTAACTGTGA

TAAACTACCGCATTAAAGCTAGCTTATCGATGATAAGCTGTCAAACATGAGAATTAATTCTTGAAGACGA
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AAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTG

GCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCC

GCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACAT

TTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGG

TGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGC

GGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTAT

GTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAG

AATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTA

TGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACC

GAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGG

AGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTG

CGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCG

GATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGA

GCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCG

TAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGT

GCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACT

TCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTG

AGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCT

GCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAG

AGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAG

TGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCC

TGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTA

CCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACG

ACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAA

GGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGG

AAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATG

CTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTT

GCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTT

TGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGC

GGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATATGGTGC

ACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACT

GGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCC

GGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCAT

CACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCACAGATGTC

TGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCG

GGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGGGGATTTCTGTTCAT

GGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCACGATACGGGTTACTGATGATGAACATGCCC

GGTTACTGGAACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACT

CAGGGTCAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGC

GATGCAGATCCGGAACATAATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGA

AACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGCT

CGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGAC

AGGAGCACGATCATGCGCACCCGTGGCCAGGACCCAACGCTGCCCGAGATGCGCCGCGTGCGGCTG

CTGGAGATGGCGGACGCGATGGATATGTTCTGCCAAGGGTTGGTTTGCGCATTCACAGTTCTCCGCAA

GAATTGATTGGCTCCAATTCTTGGAGTGGTGAATCCGTTAGCGAGGTGCCGCCGGCTTCCATTCAGGT

CGAGGTGGCCCGGCTCCATGCACCGCGACGCAACGCGGGGAGGCAGACAAGGTATAGGGCGGCGCC

TACAATCCATGCCAACCCGTTCCATGTGCTCGCCGAGGCGGCATAAATCGCCGTGACGATCAGCGGTC

CAGTGATCGAAGTTAGGCTGGTAAGAGCCGCGAGCGATCCTTGAAGCTGTCCCTGATGGTCGTCATCT

ACCTGCCTGGACAGCATGGCCTGCAACGCGGGCATCCCGATGCCGCCGGAAGCGAGAAGAATCATAA

TGGGGAAGGCCATCCAGCCTCGCGTCGCGAACGCCAGCAAGACGTAGCCCAGCGCGTCGGCCGCCA

TGCCGGCGATAATGGCCTGCTTCTCGCCGAAACGTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGC

GAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGG

TCCTCGCCGAAAATGACCCAGAGCGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAAGAAGACAGT
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CATAAGTGCGGCGACGATAGTCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTC

AAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACT

GCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGA

GGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGC

CCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAA

ATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTAC

CGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGA

TCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCG

GACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGC

CAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGT

GACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTG

ATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAAT

GGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCA

CCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGA

TCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAA

CGCCAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCC

GCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGA

AACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCAC

CCTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTGTC

CGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGCCG

TTGAGCACCGCCGCCGCAAGGAATGGTGCATG 

 

 

NM_006793 nucleotide sequence 

The 771 bp nucleotide sequence encoding the HsPrx3 protein is shown below, as cloned 

into the pET151 vector without the mitochondrial leader sequence. 

 

ATGGCGGCTGCTGTAGGACGGTTGCTCCGAGCGTCGGTTGCCCGACATGTGAGTGCCATTCCTTGGG

GCATTTCTGCCACTGCAGCCCTCAGGCCTGCTGCATGTGGAAGAACGAGCTTGACAAATTTATTGTGTT

CTGGTTCCAGTCAAGCAAAATTATTCAGCACCAGTTCCTCATGCCATGCACCTGCTGTCACCCAGCATG

CACCCTATTTTAAGGGTACAGCCGTTGTCAATGGAGAGTTCAAAGACCTAAGCCTTGATGACTTTAAGG

GGAAATATTTGGTGCTTTTCTTCTATCCTTTGGATTTCACCTTTGTGTGTCCTACAGAAATTGTTGCTTTT

AGTGACAAAGCTAACGAATTTCACGACGTGAACTGTGAAGTTGTCGCAGTCTCAGTGGATTCCCACTTT

AGCCATCTTGCCTGGATAAATACACCAAGAAAGAATGGTGGTTTGGGCCACATGAACATCGCACTCTTG

TCAGACTTAACTAAGCAGATTTCCCGAGACTACGGTGTGCTGTTAGAAGGTTCTGGTCTTGCACTAAGA

GGTCTCTTCATAATTGACCCCAATGGAGTCATCAAGCATTTGAGCGTCAACGATCTCCCAGTGGGCCGA

AGCGTGGAAGAAACCCTCCGCTTGGTGAAGGCGTTCCAGTATGTAGAAACACATGGAGAAGTCTGCCC

AGCGAACTGGACACCGGATTCTCCTACGATCAAGCCAAGTCCAGCTGCTTCCAAAGAGTACTTTCAGAA

GGTAAATCAGTAG 
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HsPrx3 amino acid sequence 

Underlining indicates the his-tag and linker residues conferred by the pET151 vector; 

rTEV cleavage site is indicated by a red star. 

MHHHHHHGKPIPNPLLGLDSTENLYFQ*GIDPFTAPAVTQHAPYFKGTAVVNGEFKDLSLDDFKGKYLVLFF

YPLDFTFVCPTEIVAFSDKANEFHDVNCEVVAVSVDSHFSHLAWINTPRKNGGLGHMNIALLSDLTKQISRDY

GVLLEGSGLALRGLFIIDPNGVIKHLSVNDLPVGRSVEETLRLVKAFQYVETHGEVCPANWTPDSPTIKPSPA

ASKEYFQKVN 

 

Important parameters for HsPrx3 

Extinction coefficients and molecular masses were used for calculation of protein 

concentration (section 2.3.5.2), identification of HsPrx3 and efficiency of cleavage 

(section 2.3.5.3).  

 

Construct Molecular Mass 

(kDa) 

Number of 

residues 

Theoretical 

pI 

Extinction Coefficient 

(M
-1

 cm
-1

) 

Native 

HsPrx3 
21.41 194 5.77 

Oxidised: 0.94 

Reduced: 0.93 

Cleaved  

HsPrx3 
22.04 200 5.59 

Oxidised: 0.91 

Reduced: 0.91 

His-tagged 

HsPrx3 
25.19 227 5.97 

Oxidised: 0.86 

Reduced: 0.85 

 

 

Location of rare codons in the HsPrx3 nucleotide sequence 

Rare arginine codons are highlighted in red, leucine in green, isoleucine in blue and 

proline in orange. BL21 Rosetta (DE3) cells complement all rare codons except the CGA 

arginine codon, which was not found to be a problem for expression. 
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gca cct gct gtc acc cag cat gca CCC tat ttt aag ggt aca gcc 

gtt gtc aat gga gag ttc aaa gac CTA agc ctt gat gac ttt aag 

ggg aaa tat ttg gtg ctt ttc ttc tat cct ttg gat ttc acc ttt 

gtg tgt cct aca gaa att gtt gct ttt agt gac aaa gct aac gaa 

ttt cac gac gtg aac tgt gaa gtt gtc gca gtc tca gtg gat tcc 

cac ttt agc cat ctt gcc tgg ATA aat aca cca AGG aag aat ggt 

ggt ttg ggc cac atg aac atc gca ctc ttg tca gac tta act aag 

cag att tcc CGA gac tac ggt gtg ctg tta gaa ggt tct ggt ctt 

gcs CTA AGA ggt ctc ttc ATA att gac CCC aat gga gtc atc aag 

cat ttg agc gtc aac gat ctc cca gtg ggc CGA agc gtg gaa gaa 

acc ctc cgc ttg gtg aag gcg ttc cag tat gta gaa aca cat gga 

gaa gtc tgc cca gcg aac tgg aca ccg gat tct cct acg atc aag 

cca agt cca gct gct tcc  aaa gag tac ttt cag aag  gta aat 

cag tag  

Important parameters for HsPrx3 muteins  

Only minor differences were seen in theoretical pI, therefore purification and 

characterisation protocols used for wildtype HsPrx3 were suitable. 

Construct Molecular     

Mass 

(kDa) 

Number of 

residues 

Theoretical 

pI 

Extinction 

Coefficient 

(M
-1

 cm
-1

) 

Cleaved P49A 22.02 200 5.59 
Oxidised: 0.91 

Reduced: 0.91 

His-tagged P49A 25.17 227 5.97 
Oxidised: 0.86 

Reduced: 0.85 

Cleaved R123G 21.96 200 5.42 
Oxidised: 0.91 

Reduced: 0.91 

His-tagged R123G 25.11 227 5.85 
Oxidised: 0.86 

Reduced: 0.85 

Cleaved S78A 22.03 200 5.59 
Oxidised: 0.91 

Reduced: 0.91 

His-tagged S78A 25.18 227 5.97 
Oxidised: 0.86 

Reduced: 0.85 

Cleaved T104W 22.07 200 5.59 
Oxidised: 1.16 

Reduced: 1.15 

His-tagged T104W 25.28 227 5.97 
Oxidised: 1.07 

Reduced: 1.07 

Cleaved C47S 22.03 200 5.59 
Oxidised: 0.91 

Reduced: 0.91 

His-tagged C47S 25.18 227 5.97 
Oxidised: 0.86 

Reduced: 0.85 

Cleaved C47SS78A 22.01 200 5.59 
Oxidised: 0.81 

Reduced: 0.91 

His-tagged C47SS78A 25.16 227 5.97 
Oxidised: 0.86 

Reduced: 0.85 
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Appendix 5  Peptide sequencing results 

 

Peptide sequencing of MtAhpE gel bands was carried out at Auckland University 

Proteomics Facility using MS/MS following tryptic digest by Kristen Boxen. Peptide 

sequencing of HsPrx3 gel bands was carried out at Lincoln University by Stefan Clerens.  

 

Peptide sequencing of the Q83A MtAhpE mutein 
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Peptide sequencing of HsPrx3 wildtype SDS-PAGE bands 
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Cmpd. No. or mlz meas. t. mlz z R1 Score p Range Sequence Modification 
Cmpds. [ppmJ !min! 

9 1 511.2400 -57.27 2 7.9 62.4 0 74-83 K.GTAW NGEFK.D 

88 1 476.7600 52.99 2 11.5 44.9 0 84-91 K.DLSLDDFK.G 
41 2 569.3200 47.51 2 10 .1 46.5 1 84-93 K.DLSLDOFKGK.Y 

31 1 716.7600 -72.15 2 9 .4 30.3 0 119-130 KANEFHDVNCEW .A C3Jb3midome1hyt: 9 

56 2 801.8400 -30.53 2 10 .6 29.4 0 119-132 KANEFHDVNCEW AV.S C3Jb3midomethvl: 9 

96 679.6700 -16 .99 3 65. 0 131-14 V.AVSVOSHFSHLAWINTP t.K 

Cmpd. No. of mtz meas. t.mll z R1 ScOJe p Range Sequence Modification 
Cmods. room min 

91 1 655.9700 -49.55 3 11.6 56.0 0 132-148 A.VSVOSHFSHLAWINTPR.K 

85 2 622.9500 -47.68 3 11.4 52.5 0 133-148 V.SVOSHFSHLAWINTPR.K 

166 1 585.3300 27.86 3 142 69.3 0 150-166 K.NGGLGHMNIAUSDL TK.O 

120 487.3500 102.50 2 12 49. 0 158-166 N.IA LSOLTK.O 

134 1 649.6800 -20.70 3 13.1 4 1.5 1 167-184 K.OISROYGVLLEGSGLALR.G 

170 6 731.8700 -39.14 2 14.3 121.0 0 171-184 R.OYGVLLEGSGLALR.G 

176 14 643.3200 -92.27 2 14 .9 79.0 0 185-196 R.GLFIIOPNGVIK.H 

33 19 803.7700 - 104.52 2 9 .7 69.4 0 197-207 K.HLSVNOLPVGR.S 

57 1 535.3700 123.94 2 10 .6 61.1 0 198-207 H.LSVNOLPVGR.S 
4 8 417.2100 -28.28 2 7.0 43.4 0 208-214 R.SVEETLR.L 
14 2 497.7400 9.90 2 8 .3 59.3 0 218-225 KAFOYVETH.G 

12 1 526.2500 7.97 2 8 .1 38.5 0 218-226 KAFOYVETHG.E 

30 1 640.2600 -64.52 2 9 .4 52.0 0 218-228 KAFOYVETHGEV.C 
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Appendix 6  HsPrx3 mutein purification traces and gels 

 

T104W purification  

 
A: IMAC elution profile B: SDS-PAGE of cell lysate and IMAC fractions 

Figure A6.1: A: Typical IMAC elution profile of T104W mutein. B: SDS-PAGE gel showing: 

lane 2: whole cell lysate; lane 3: soluble fraction; lane 4: IMAC flow through; lane 5-8: selected 

fractions across the peak as indicated by stars on the chromatogram. 

 

A: Gel filtration elution profile B: SDS-PAGE of gel filtration fractions 

FigureA6.2: A: Typical gel filtration elution profile of T104W mutein showed a single main 

peak around 80 mL, and early eluting small peaks. B: SDS-PAGE gel showing: Lane 2: fraction 

from the peak near the void volume; lanes 3-5: selected fractions across the small peaks; lanes 6-

11: selected fractions across the main peak; as indicated by stars on the chromatogram. SDS-

resistant dimers were often seen during purification, these are discussed in the text (chapter five). 
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P48A purification 

 
A: IMAC elution profile B: SDS-PAGE of cell lysate and IMAC fractions 

Figure A6.3: A: Typical IMAC elution profile of P48A mutein. B: SDS-PAGE gel showing: 

lane 2: whole cell lysate; lane 3: soluble fraction; lane 4: insoluble fraction; lane 5: IMAC flow 

through; lanes 6-9: selected fractions across the peak as indicated by stars on the chromatogram. 

 

 

A: Gel filtration elution profile B: SDS-PAGE of gel filtration fractions 

FigureA6.4: A: Typical gel filtration elution profile of the P48A mutein showed a single main 

peak around 80 mL, with a leading edge and early eluting small peaks. B: SDS-PAGE gel 

showing: Lanes 2-4: selected fractions across the small peaks; lanes 6-10: selected fractions 

across the main peak; as indicated by stars on the chromatogram. 
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R123G Purification 

 
A: IMAC elution profile B: SDS-PAGE of cell lysate and IMAC fractions 

Figure A6.5: A: Typical IMAC elution profile of R123G mutein. B: SDS-PAGE gel showing: 

lane 2: whole cell lysate; lane 3: soluble fraction; lane 4: insoluble fraction; lane 5: IMAC flow 

through; lanes 6-12: selected fractions across the peak as indicated by stars on the chromatogram. 

 

       

A: Gel filtration elution profile B: SDS-PAGE of gel filtration fractions 

FigureA6.6: A: Typical gel filtration elution profile of the R123G mutein showed a single main 

peak around 90 mL, with a small leading edge. B: SDS-PAGE gel showing: Lanes 2-5: selected 

fractions across the small peak and main peak; as indicated by stars on the chromatogram. 
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C47S Purification 

         
A: IMAC elution profile B: SDS-PAGE of cell lysate and IMAC fractions 

Figure A6.7: A: Typical IMAC elution profile of C47S mutein. Protein eluted as a late peak only 

after considerable washing with high imidazole buffer B: SDS-PAGE gel showing: lane 2: whole 

cell lysate; lane 3: soluble fraction; lane 4: insoluble fraction; lane 5: IMAC flow through; lane 6: 

IMAC wash; lanes 7-10: selected fractions across the peak as indicated by stars on the 

chromatogram. 

 

   

A: Gel filtration elution profile 

FigureA6.8: A: Typical gel filtration elution profile of the C47S mutein showed a single main 

peak around 80mL, with a number of early eluting peaks suggesting aggregation. 
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C47SS78A Purification 

 

A: IMAC elution profile  

Figure A6.9: A: Typical IMAC elution profile of C47SS78A mutein.  

 

   
A: Gel filtration elution profile B: SDS-PAGE of gel filtration fractions 

FigureA6.10: A: Typical gel filtration elution profile of the C47SS78A mutein showed a main 

peak around 60 mL, with a small shoulder. A second peak was seen around 80 mL B: SDS-

PAGE gel showing: Lanes 2-7: selected fractions across the small peak and main peak; lanes 8-

10: selected fractions across the late eluting smaller peak, as indicated by stars on the 

chromatogram. 

 

 

368



P a g e  | DDD 

 

 

Appendix 7  HsPrx3 mutein SAXS values 

Table A7.1: S78A 

Sample Concentration 

mg/mL 

Dmax 

(Å) 

Standard 

Error 

Rg  from 

Guinier 

(Å) 

Standard 

Error 

Rg from 

GNOM 

(Å) 

Standard 

Error 

Volume 

(Å
3
) 

Standard 

Error 

MW 

(kDa) 

Standard 

Error 

S78A untagged 0.5  195 4 65 1 62 1 519000 21000 314 11 

 Reduced 1  194 4 63 0 62 0 513000 11000 310 5 

 2  191 8 63 0 62 1 511000 18000 307 9 

S78A untagged 0.5  249 5 74 0 80 1 601000 14000 336 6 

non-reduced 1  223 2 75 0 83 0 700000 12000 364 3 

 2  262 1 76 0 85 0 1390000 46000 678 19 

            

S78A tagged 0.5  193 6 60 1 60 1 385000 193000 363 10 

 reduced 1  197 8 61 0 60 0 586000 17000 361 11 

 2  188 9 60 1 59 1 578000 26000 355 14 

S78A tagged  0.5  193 0 64 1 62 0 652000 4000 400 3 

non-reduced 1  218 8 64 1 66 1 742000 35000 442 17 

 2  208 5 64 1 63 1 658000 13000 397 4 

Wildtype              

 dodecamer 
 ~180 

 
Theoretical Rg : 59 

 
417000 

 
257 

 

Wildtype 

 Dimer 
 ~60 

 
Theoretical Rg : 20 

 
49800 

 
42 
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Table A7.2: T104W 

Sample Concentrati

on mg/mL 

Dmax 

(Å) 

Standard 

Error 

Rg  from 

Guinier 

(Å) 

Standard 

Error 

Rg from 

GNOM 

(Å) 

Standard 

Error 

Volume 

(Å
3
) 

Standard 

Error 

MW 

(kDa) 

Standard 

Error 

T104W untagged 0.5 169 3 51 1 54 1 224000 29000 137 19 

 reduced 1  178 5 53 1 54 0 206000 11000 127 7 

 2  172 10 57 1 56 0 297000 36000 215 23 

T104W untagged 0.5 112 4 36 1 34 1 91000 1600 57 1 

non-reduced 1  118 4 37 1 35 0 95000 700 60 0 

 2  125 1 37 1 31 1 102000 2100 64  1 

            

T104W tagged 0.5 mg/mL 184 13 56 1 56 0 421000 7200 261 2 

 reduced 1 mg/mL 158 4 55 0 55 0 425000 3000 264 1 

 2 mg/mL 184 6 56 0 55 0 420000 4000 261 3 

T104W tagged 0.5 mg/mL 98 0 27 0 28 0 90700 3600 55 2 

non-reduced 1 mg/mL 96 1 28 0 29 0 94500 2600 58 1 

 2 mg/mL 99 2 29 1 39 0 96600 2200 60 1 

Wildtype              

 dodecamer 
 ~180 

 
Theoretical Rg : 59 

 
417000 

 
257 

 

Wildtype 

 Dimer 
 ~60 

 
Theoretical Rg : 20 

 
49800 

 
42 
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Table A7.3: P49A 

Non-reduced tagged P49A mutein was not able to be analysed due to the tendency to aggregate. 

Sample Concentration 

mg/mL 

Dmax 

(Å) 

Standard 

Error 

Rg  from 

Guinier 

(Å) 

Standard 

Error 

Rg from 

GNOM 

(Å) 

Standard 

Error 

Volume 

(Å
3
) 

Standard 

Error 

MW 

(kDa) 

Standard 

Error 

P49A untagged 0.5  210 11 63 1 63 1 563000 16400 325 6 

 Reduced 1  211 5 63 0 62 0 506000 5900 302 2 

 2  219 7 63 0 63 0 554000 13000 326 8 

P49A untagged 0.5  218 11 68 1 67 2 673000 45000 378 23 

non-reduced 1  221 6 67 0 66 1 613000 18000 346 8 

 2  203 1 71 0 65 0 632000 4100 371 2 

            

P49A tagged 0.5  204 6 60 1 60 0 615000 5500 375 4 

 Reduced 1  197 3 60 1 59 0 577000 7400 353 5 

 2  206 0 59 0 60 0 582000 4300 357 2 

Wildtype              

 Dodecamer 
 ~180 

 
Theoretical Rg : 59 

 
417000 

 
257 

 

Wildtype 

 Dimer 
 ~60 

 
Theoretical Rg : 20 

 
49800 

 
42 
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Table A7.4: C47S 

Untagge C47S mutein was not able to be analysed due to the tendency to aggregate. 

Sample Concentration 

mg/mL 

Dmax 

(Å) 

Standard 

Error 

Rg  from 

Guinier 

(Å) 

Standard 

Error 

Rg from 

GNOM 

(Å) 

Standard 

Error 

Volume 

(Å
3
) 

Standard 

Error 

MW 

(kDa) 

Standard 

Error 

C47S tagged 0.5  190 10 58 0 57 1 543000 11000 336 6 

 reduced 1  187 11 57 0 57 1 532000 5000 331 3 

C47S tagged 0.5  196 7 60 1 59 1 600000 4700 367 3 

non-reduced 1  204 4 60 1 60 0 607000 5800 369 1 

Wildtype              

 dodecamer 
 ~180 

 
Theoretical Rg : 59 

 
417000 

 
257 

 

Wildtype 

 Dimer 
 ~60 

 
Theoretical Rg : 20 

 
49800 

 
42 
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Table A7.5: C47SS78A 

Sample Conc. 

mg/mL 

Dmax 

(Å) 

Standard 

Error 

Rg  from 

Guinier 

(Å) 

Standard 

Error 

Rg from 

GNOM 

(Å) 

Standard 

Error 

Volume 

(Å
3
) 

Standard 

Error 

MW 

(kDa) 

Standard 

Error 

C47SS78A untagged 0.5  170 2 59 0 57 0 532000 3100 331 2 

 Reduced 1  201 5 58 0 58 0 537000 5500 331 2 

 2 196 3 59 0 58 0 529000 5300 327 3 

C47SS78A untagged 0.5  199 5 59 0 59 0 555000 7600 341 3 

non-reduced 1  206 0 59 0 59 0 562000 590 344 0 

  207 1 59 0 59 0 575000 8600 350 5 

            

C47SS78A tagged 0.5  163 2 57 0 56 0 463000 2300 286 1 

 Reduced 1  185 6 56 0 56 0 465000 1100 287 0 

 2 171 1 55 0 55 0 455000 320 281 0 

C47SS78A tagged 0.5  158 1 57 0 56 0 461000 460 286 0 

non-reduced 1  198 2 57 0 57 0 474000 950 294 1 

 2 196 2 58 0 57 0 480000 4400 299 3 

Wildtype              

 Dodecamer 
 ~180 

 
Theoretical Rg : 59 

 
417000 

 
257 

 

Wildtype 

 Dimer 
 ~60 

 
Theoretical Rg : 20 

 
49800 

 
42 
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A: S78A tagged   B: S78A tagged    C: T104W tagged  D: T104W tagged 
non-reduced   reduced    non-reduced   reduced      

                
 

E: P49A tagged   F: P49A tagged    G: C47SS78A tagged   H: C47SS78A tagged 
non-reduced   reduced    non-reduced    reduced 

   

Figure A7.1: SEC/SLS data for tagged muteins: Analysis of tagged muteins generally showed a tendency toward the dodecameric state. This is 

in line with results for tagged wildtype and so gave no additional insight into the influence of the mutations. The exception was T104W which 

switched between the dimer and dodecamer even when the tag was attached (discussed in text). Tagged wildtype in identical conditions is shown 

with the dashed lines, molecular weight across the peaks with red lines.  
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A: S78A untagged   B: S78A untagged  C: T104W untagged  D: T104W untagged 
non-reduced    reduced   non-reduced   reduced  

   

 
E: P49A untagged   F: P49A untagged  G: C47S tagged     H: C47S tagged 
non-reduced    reduced   non-reduced     reduced  

     

 

Continued onto next page
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I: C47SS78A untagged   J: C47SS78A untagged  K: R123G untagged    L: R123G untagged 
non-reduced    reduced   non-reduced     reduced  

     

Figure A7.2: Guinier region plots of muteins: A number of muteins showed a nonlinear Guinier plot, indicative of aggregation. This was more 

common in non-reduced samples. R123G was particularly aggregated, as discussed in the text, and only one sample was able to be run through the 

in line FPLC. All other samples were injected directly into the capillary and analysed at 2 mg/mL (black diamonds); 1 mg/mL (dark grey 

diamonds); 0.5 mg/mL (light grey diamonds). Cleaved C47S was unable to be produced and the tagged construct was not able to be concentrated 

to higher than 1 mg/mL. 
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